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’ ABSTRACT

Comprehension of global oceanic currents
and, ultimately, of climate variability re-
quires the use of computer modelling. Al-
though much effort has been spent on the
accuracy of traditional finite difference (FD)
models used in ocean modelling, there are
still concerns, especially since these models
have a crude representation of the geometry
of oceanic basins. Such a crude representa-
tion may influence the accuracy of modelling
boundary currents, or unrealisticly represent
the impinging of eddies or the propagation
of Kelvin waves along the coastline. This
motivated the use of alternative modelling
techniques applied on completely irregular
geometries such as finite element (FE) and
spectral element (SE) methods. In this the-
sis, we want to investigate the accuracy and
cost-effectiveness of these three numerical
methods in irregular domains and to under-
stand to which extent the unstructured grid
FE and SE methods constitute an improve-
ment over the more traditional FD meth-
ods. To accomplish this, we limit ourselves
to modelling the shallow water equations in
presence of irregular coastlines with no bot-
tom topography.

In the first part of the thesis, we compare
the performances of FD methods on Carte-
sian grids with FE and SE methods in var-
ious geometries for linear and nonlinear ap-
plications. We argue that the SE method is
to a certain extent superior to FD methods.
In a second part, we study the influence of
step-like walls on vorticity budgets for wind-
driven shallow water FD models. We show
that vorticity budgets can be very sensitive
to the FD formulation. This has certain im-
plications for using vorticity budgets as a di-
agnostic tool in FD models. In the final part,
we use a SE shallow water model for inves-
tigating the “inertial runaway problem” in
irregular domains for the single-gyre Munk
problem. Ideally, one would like the statisti-
cal equilibrium observed at large Reynolds
number to be insensitive to model choices
that are not well founded, e.g., the precise
value of the viscous coefficient, and choice of
dynamic boundary condition. Simple models
of geophysical flows are indeed very sensitive
to these choices. For example, flows typi-
cally converge to unrealisticly strong circula-
tions, particularly under free-slip boundary
conditions, even at rather modest Reynolds
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numbers. This is referred to as the “inertial
runaway problem”. We show that the addi-
tion of irregular coastlines to the canonical
problem helps to slow considerably the cir-
culation, but does not prevent runway.



RESUME

La compréhension des courants
océcaniques globaux et, ultimement, de
la varibilité climatique requiert I'usage de la
modélisation numérique. Bien que beaucoup
d’effort ait été dépensé dans ’amélioration
des modeles traditionnels aux differences
finies (DF) utilisés dans la modélisation
océanique, il reste des interrogations con-
cernant la précision de ces modeles, et
ce d’autant plus que ces modeles ont une
représentation tres grossiere de la géométrie
des bassins océaniques. Une telle grossiere
représentation peut modifier la précision
des courants le long des frontiéres, ou mal
représenter le choc des tourbillons sur, ou la
propagation des ondes de Kelvin le long de
la frontiere. Ceci a motivé 'utilisation des
méthodes numériques alternatives comme
les éléments finis (EF) ou les éléments spec-
traux (ES) qui s’appliquent & des géométries
completement irrégulieres. Dans cette these,
nous voulons étudier la précision et le cout
de ces trois types de méthodes numériques
dans des domaines irréguliers et comprendre
jusqu’a quel point les méthodes EF et ES
fonctionnant sur des grilles irréguliéres con-
stituent un progrés comparé aux méthodes
DF traditionnelles. Dans ce but, nous
nous limitons & modéliser les équations en
eaux peu profondes en présence des coOtes
irrégulieres sans topographie.

Dans la premiere partie de cette these,
nous comparons les performances des
méthodes DF sur des grilles cartésiennes
avec les méthodes EF et ES dans des
géométries différentes pour des problemes
linéaires et non-linéaires. Nous argumentons
que la méthode ES est, dans une certaine
mesure, supérieure aux méthodes DF. Dans
la seconde partie, nous étudions I'influence
des marches d’escalier présentes le long des
murs sur les budgets de vorticité pour des
modeles DF en eaux peu profondes forcés
par le vent. Nous montrons que les budgets
de vorticité peuvent étre tres sensibles a la
formulation DF utilisée. Ceci a certaines
implications concernant I'utilisation des
budgets de vorticité comme outil de di-
agnostique dans les modeles DF. Dans la
derniére partie, nous utilisons un modele
ES en eaux peu profondes pour étudier
le probleme de “fuite inertielle” dans des
domaines irréguliers pour le probléeme de
Munk non-linéaire. Idéalement, on voudrait
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que l'équilibre statistique observé a grand
nombre de Reynolds soit insensible au choix
fait concernant des approximations mal—ou
peu—ifondées du modele, comme la valeur
du coefficient de viscosité turbulente ou le
type de condition frontiere. Les modéles
simples de fluides géophysiques ont en effet
tendance & étre treés sensibles. Par exemple,
I’écoulement converge vers des circulations
totalement irréalistes, particulierement pour
une condition frontiere de glissement libre,
et ce méme pour des nombres raisonnables
de Reynolds. C’est ce que 'on nomme “fuite
inertielle”. Nous montrons que I’'inclusion de
coOtes irrégulieres dans ce probléme canon-
ique permet de ralentir considérablement la
circulation, mais n’élimine pas pour autant
le probleme de la fuite inertielle.



CONTRIBUTIONS

In Chapter 2, we develop our own adap-
tive spectral element method which is an au-
tomatic procedure for assessing local errors
and increasing, accordingly, the resolution of
the mesh. Test and use of this procedure are
made in Chapters 3 and 5. We also develop
our own curved spectral element method for
better representing smoothly varying coast-
lines.

In Chapter 3, we develop a series of test
cases in order to study the convergence
with resolution of the accuracy and cost-
effectiveness of each scheme in regular and
irregular domains. The originality of this ap-
proach stems from the variety of numerical
methods we test and compare, and the thor-
ough study of the influence of the resolution
on them. We explore the limitations of each
numerical scheme.

In Chapter 4, we use vorticity budgets
as a way to assess the accuracy of different
numerical formulations for modelling wind
driven ocean gyres in a rectangular basin.
In particular, we demonstrate that, for finite
difference formulations, the advective terms
in the vorticity budget do not integrate to
zero. This error can be exacerbated by the
presence of near step-like structures along
the boundary, such as those that occur when
a straight coastline lies at an angle to the
coordinate axes used for discretization. It is
further found that this problem is minimized
for certain numerical choices relating to the
treatment of the advective and viscous terms.

In Chapter 5, we use a spectral element
model to investigate the inertial runaway
problem (i.e., that models produce unreal-
istically strong flows as dissipative param-
eters are reduced towards what are consid-
ered realistic values) in irregular domains.
In particular, we show that small scale (but
resolved) features in the coastlines lead to
the generation of fine scale structure in the
vorticity field, where the Rossby number
can become of order unity, and the quasi-
geostrophic approximation becomes suspect.
That these occur under free-slip boundary
condition contrasts the classic, rectangular
basin case. We find that small scale struc-
tures in the coastline act to slow, but not to
stop inertial runaway.

v



Contents

Abstract i
Résumé iii
Contributions iv
List of Figures viii
List of Tables xiii
Acknowledgements xiv
1 Introduction 1
2 Presentation of the Numerical Methods 6
2.1 The Time Discretization . . . . . . . . . . . . o o v v i e 8
2.2  Finite Difference Models . . . . . . . . . . . . . e 10
2.2.1 Introduction . . . . . . . . . . . e 10

2.2.2 The Three Staggerings Used . . . . . . .. ... ... ... ...... 12

2.3 Finite Element Models . . . . . . . . . . . . . .. o 15
2.3.1 Introduction . . . . . . . . . . . e e 15

2.3.2 The Galerkin Formulation . . . . . . . . . . . ... ... .. ..... 17



CONTENTS vi

2.3.3 The Different Finite Element Models Tested . . . . . . . . ... ... 18

2.4 The Discontinuous Spectral Element Method . . . . . ... ... ... ... 21
2.4.1 Introduction . . . . . . ... 21

2.4.2 The Model Formulation . . .. ... ... ... .. .......... 22

2.4.3 Adaptive Mesh Refinement . . . . . . ... ... ... ... ... 24

2.4.4 Curved Spectral Element Method . . . . . . .. .. ... ... .... 25

2.5 SUMMATY .+ .« v v v e e e e e e e e e e e e e e e e e 27

3 Testing the Different Numerical Methods 28
3.1 Gravity Waves in a Square Domain . . . . . . .. ... ... ... 28
3.2 The Wind-driven Circulation in a Circular Domain . . . . . . . ... . ... 32

3.3 Conservative Properties of the Different Numerical Formulations for a Non-

linear Problem . . . . . . . . . ... 36

3.4 The Munk Problem in a Square Domain . . . . . ... .. ... ....... 37
3.5 Conclusions . . . . . . . . e 43
4 Finite Difference Methods in Rotated Basins 47
4.1 Imtroduction . . . . . . . . . . oL 47
4.2 Vorticity Budgets in a C-grid SW Model . . . . . . .. ... ... ... ... 48
4.2.1 The General Form of the Discretized Vorticity Budget . . . . . . .. 48
4.2.2 Numerical Formulations . . . . ... ... ... .. ... .. ..., 50
423 Results . . . . . o 51

4.3 Vorticity Budgets in SW B-grid Models . . . . . ... .. ... ... .. .. 53
4.4 The Quasi-Geostrophic Model . . . . . . .. ... . oo L. 55
4.4.1 Discretization . . . . . . ... Lo 55

4.4.2 Results . . . . . e 56



CONTENTS

4.5 Discussion and Conclusion . . . . . . . . . . . .. .. oo

5 Single Gyre Circulation in Irregular Domains

5.1 Review of the Single Gyre Problem with Free-Slip Boundary Conditions . .
5.2  Model Selection and Experimental Design . . . . ... .. ... .......
5.3 Results. . . . . . . o

5.3.1 General Results for all Geometries . . . . . .. .. ... ... ....

5.3.2 Role of the Transients for Geometry V at High Reynolds Number . .
5.4 Scale Analysis and Discussion . . . . . . . . . ... oo oo
55 Adaptivity . . . . . ..o

5.6 Conclusions . . . . . . . . . e

6 Conclusions

A An A-grid Energy Conserving Formulation

B Model Vorticity Budget on a B-grid

vii

o7

64

64

67

72

72

74

81

85

87

90

94

96



List of Figures

2.2

2.1

2.3

2.4

2.5

2.6

2.7

2.8

2.9

2.10

2.11

2.12

2.13

2.14

3.1

3.2

Effect of a poor resolution on the geometry of a strait. . . . ... ... ..
Effect of the rotation on the discretization of a square domain. . . . .. ..

Elevation field for the Kelvin retardation problem in presence of steps along
the walls at two different resolutions. . . . . . . . ... .. ... ... ...,

The three major horizontal staggerings for the primitive equations. . . . . .
Triangulation of the domain. . . . . . . ... .. ... ... ... ......
¢i, the basis function related to the node M;. . . . .. ... ... ... ...
¢o is the basis function related to the node zo =0. . . . . . . ... .. ...

The discontinuous linear non conforming basis function for the PN¢ — P
element of Hua and Thomasset (Hua and Thomasset, 1984). . . . . . . . ..

The discontinuous constant basis function for pressure over the macro-
element of LLS. . . . . . . . . . . oo

Local non-orthogonal coordinates in a given triangle . . . . . . ... .. ..
Example of Legendre polynomials ®; = Lo(&1)L3(&2) . . - . o o o o o o L.
Remeshing strategies. The triangle to be refined isin grey. . . . . . . . . ..
Transformation of one triangle intro a curved triangle . . .. ... ... ..

Transformation of one triangle intro a curved triangle with the coordinate
system used in the computation of the integrals . . . . . . ... ... . ...

The wave test experiment . . . . . . . ... ... ... ... ... ...,

Convergence with resolution of the normalized error in the u-component for
second order C-grid formulation (FDM), O-FDM4 and R-FDM4 models. . .

viii

11

12

13

14

17

17

18

20

21

23

23

25

26

26

29

30



LIST OF FIGURES

3.3

3.4

3.5

3.6

3.7

3.8

3.9

3.10

3.11

3.12

3.15

3.13

3.14

3.16

3.17

3.18

3.19

CPU cost with the normalized error in u-component for the second order
C-grid (FDM) and R-FDM4 models. . . . . ... ... .. ... .......

The four FE models (LW, HT, PZM, LLS) are tested against the analytical
solution with increasing resolution. . . . . . . . . ... ... L.

Convergence of the normalized error in v with respect to the resolution for
the LW-FE and SEmodels . . . ... ... ... ... .. ... .......

Convergence of the normalized error in u with respect to the resolution for
the C-grid FD, LW-FE and SE models. . . . .. ... .. ... .......

Variation in the u-component normalized error as a function of CPU cost for
five models. . . . . . ...

Grids for the circular domain for the FD models. . . . . . .. ... ... ..

Convergence with resolution of the normalized elevation error for the second
order C-grid FD, O-FDM4 and R-FDM4 models in a circular domain.

Elevation error in a circular domain for four FE models. . . . . . . . . . ..

Normalized elevation error for the C-grid FD, LW-FE and SE models for a
circular domain. . . . . . ..o

Total energy after 18 days of simulation for the C-grid FD and the lumped
LW, delumped LW, PZM and LLS FE models and the SE model for the
geostrophically balanced eddy. . . . . ... ... ... ... ..

Kinetic energy during a 6 year spin-up for the C-grid FD, the lumped LW,
HT, PZM and LLS FE models. . . . ... ... ... .. ... .......

Elevation field after a six year simulation in a non-rotated basin using O-
FDM4 and R-FDM4. . . . . . . . . . e

As for Figure 3.13 but for rotated basin. . . . . . ... .. ... ... ....

Elevation field after a 6 year spin-up for the C-grid FD, the lumped LW,
delumped LW, HT, PZM and LLS FE models for the single gyre wind forcing
problem. . . . . ..o

Single gyre wind forcing experiments for the delumped LW FE model com-
pared to the C-grid FD model. . . . . . . .. ... .. ... ... ... ...

Kinetic energy during spin-up for the single gyre Munk problem with v =
2000 m?s~! for the C-grid FD, the delumped LW FE and SE models.

Elevation field for the SE model after 6 years from spin-up for the single gyre
Munk problem with » = 2000 m?s™", n,=5. . . . .. .. ... ... ....

ix

30

31

32

32

33

34

35

35

36

37

38

39

39

40

41

41



LIST OF FIGURES X

3.20 As for Fig. 3.18 but with v =700 m?s=*. . .. ... ... ... .. ..... 42
3.21 As for Fig. 3.19 but with v =700 m?s~1.. . . . . . .. .. ... ... ..., 42

3.22 Convergence with resolution for the nonlinear Munk problem of the normal-
ized kinetic energy error for the solution from the C-grid FD and the SE
models. . . . L 43

3.23 As for Fig. 3.22 but for the convergence of the normalized error with CPU
COSt. . . e 43

3.24 Solutions after a 6 year spin-up for the Munk problem using the adaptive SE
model withn, =5. . . . . . .. . . e 44

4.1 Locations of variables near a step for the SW C-grid model and the QG model. 59

4.2 Local advective flux along the boundary at 20 km resolution in a square basin
for the enstrophy conserving formulation. . . . . ... ... ... ... ... 59

4.3 Northward flow past a forward step. The shaded area is the model domain. 59

4.4 Elevation fields in meters after a 6 year spin-up for 20 km and 10 km reso-
lution. Shown are results from the A and B combination with or without a
3.44° rotation angle of the basin. . . . . . . . .. ... o o000 60

4.5 (a) Kinetic energy after spin-up and (b) ratio of Fuq4, to F; for the four

combinations combinations. . . . . . . ... . ... oo 60
4.6 Kinetic energy after spin-up for the B combination in 10'® m®/s2. . . . . . . . .. 61
4.7 Ratio of F,4, to F; for the B combination. . . . . . . . . . . . . ... .. .... 61

4.8 Convergence of F,q, with resolution for 0°, 20°, 45° rotation angle for the B com-
bination. . . . . . . . L e e e e e e e e e e e e e e e e e e 61

4.9 Kinetic energy during spin-up for six runs using the J; Jacobian at 6 different
rotation angles. . . . . . . .. Lo 61

4.10 Kinetic energy after spin-up for (a) Js at 0° rotation, (b) J7 at 0°, (c) J3 at 30, (d)

Jr at 30°, (e) Js at —30°, (f) Jr at —30°. . . . . .. .. ... 62
4.11 Ratio of F,,, to the wind input for (a) J3 at 0° rotation, (b) J7 at 0°, (c) J3 at 30°,

(A) Jr at 300« o 62
4.12 Ratio of F. to the wind input. (a-d) as described in Fig. 4.10. . . . . . . .. .. 62

4.13 Ratio of Faqy = F'

adv

+ F. to the wind input. (a-d) as described in Fig. 4.10. . . 62



LIST OF FIGURES xi

4.14

5.1

5.2

5.3

5.4

9.5

5.6

5.7

5.8

5.9

5.10

5.11

5.16

5.12

5.13

5.14

5.15

5.17

5.18

Semi-advective flux, F

4u» and beta contribution, F., to the vorticity budget

for the J3 Jacobian at —30° rotation angle. . . . . .. ... ... .. .... 63
Notation corresponding to the curvilinear coordinates. . . . . . .. . .. .. 66
The five geometries used for our application of the SE method. . . . .. .. 68

Elevation fields in the Geometry V for the C-grid model after 3 years of
SPIN-UP. « + v v o e e e e e e e e e e 69

Total energy during spin-up for the A and B combinations of the FD C-grid
model and for the SE model at n, = 5 (SPOC 5) in Geometry V. v = 100 m?s~!. 69

Mean elevation fields for the five geometries using the SE model. . . . . . . 70
Mean vorticity field for the Geometries IV and V using the SE model. . . . 73
Power input by the wind using the mean fields with respect to the boundary

Reynolds number. . . . . . . ... 74
Mean standard deviation of the elevation. . . . . ... ... ... ... ... 75

Mean standard deviation of the elevation for frequencies with period above

200 days. . ... e 75
Mean standard deviation of the elevation for frequencies with period between
17 and 200 days. . . . . . . ... 75
Mean standard deviation of the elevation for frequencies with period between
band 17 days. . . .o Lo 75
Instantaneous vorticity field in the vicinity of the recirculation. . . . . . .. 78

Hovmoller diagram of the filtered elevation with respect to time and location

along the boundary. . . .. . .. ... ... 79
Amplitude of the Kelvin wave in meters along the boundary averaged over 6

VEATS. v v v v e e e e e e e e e e e e e e e e e e e e e e e e 79
Time series of the amplitude of the oscillations at (x=500 km, y=0 km). . 79
Total energy for the last 6 years of simulation. . . .. .. ... ....... 80

(a) Local wind input to the vorticity in Geometry V. (b) Local divergence of
the eddy transport of vorticity in Geometry V. (c) Vector plot of the eddy
transport of vorticity normal to the streamlines in Geometry V. . . . . . .. 81

The region in grey represents where the absolute vorticity is approximately
conserved. ... ..o e e e e e e e e 82



LIST OF FIGURES

5.19

5.20

5.21

5.22

5.23

5.24

9.25

Maximum of the mean elevation for the three geometries. The maximum
elevation is a good proxy for the strength of the recirculation. . .. .. ..

Kinetic energy of the mean fields with respect to the boundary Reynolds
number. . ... L e e e e e e

Mesh for the original and the refined runs. . . . . .. .. ... ... .. ..

Total energy for the last 6 years of simulation for the original and refined
meshes. . . . . . . L

Amplitude of the fast oscillations at (x=500 km, y=0 km) along the boundary
for the original and refined meshes. . . . . . . .. ... o oL

Mean elevation fields for the original mesh and the refined mesh. . . . . ..

Mean vorticity fields for the original mesh and the refined mesh. . . . . ..

xii

84

85

86

87



List of Tables

2.1

2.2

3.1

3.2

3.3

4.1

4.2

Al

List of variables in (2.1-2.2) . . . . . . .. ... ...

Refinements parameters used in the simulations unless otherwise specified. .

Convergence order for the different models for the linear wave experiment in
a square domain. For all models, the order is fairly close to their theoretical
value. Models using unstructured grids lost almost an order for the error in
v compared to theerrorinw. . . ... ... ... .. ... . ... ...,

Convergence order in elevation, for the different models for the linear wind-
driven experiment in a circular domain without Coriolis terms. . . . . . . .

Convergence order for the different models for the nonlinear Munk problem
in asquare domain. . . . . . . . .. ...

The four combinations of advection formulations and stress tensor formulations.
Summary of the vorticity budget and kinetic energy diagnostics for the B-grid

after a spin-up of 6 years. . . . . . .. ... Lo

Notations for the finite volume method . . . . . . . . . . . . ... ... ...

xiii

33

36

52

54

94



ACKNOWLEDGEMENTS

ACKNOWLEDGEMENTS

Many thanks go to my supervisors,
Charles Lin and David Straub, for their sup-
port and the proof-reading of the thesis.
David Straub is in particular acknowledged
for his important contribution to Chapters 4
and 5.

The C2GRC group at McGill was a great
place for meeting and listening to world-
renowned scientists. I must thank in particu-
lar Lawrence Mysak for inviting me along on
numerous occasions for after-seminar beers
or suppers. Many McGill PhD students left
the department in the course of my studies
and I am indebted to them for engrossing
scientific conversations we had around a few
beers. Thanks therefore go to Rob Scott,
Halldor Bjornsson, Martin Charon, Daniel
Le Roux, Bruno Tremblay, Daniel Bourgault,
Stephen Newbigging and three cornerstones
of the department, Rick Danielson, Werner
Wintels and Marco Carrera.

Deep thanks go to Catherine Mavriplis for
discussion about error-estimators in adaptive
spectral element methods and Julien Dom-
pierre for the remeshing strategies. Stephen
Newbigging, Ted Tedford, Drew Peterson
and Jason Chaffey corrected the spelling
and the English grammar. CERCA (Cen-
tre de recherche en calcul appliqué) provided
me with an excellent working environment.
Many thanks go to the CERCA staff, scien-
tists and other PhD students in general for
their support and discussions.

I must also thank my father for motivat-
ing me to do a PhD in North-America de-
spite the great distance and stretched family
bounds implied by doing so.

This research was supported by NSERC
and CCGCR. VU (developed at CERCA)
GMT, Gnuplot and Ferret are the graphical
packages used in this thesis.

xiv



Chapter 1

Introduction

Modelling the ocean has become an essen-
tial component of coastal and navigational
hazard prevention (beach erosion, pollutant
transport, tidal or storm surge, ice drift,
wave height). Moreover, the ocean being
a large component of the global climate,
to model its circulation is essential to ob-
taining a better understanding of the dra-
matic climatic changes which either have oc-
curred or might occur. Finally, some the-
oretical studies require the use of models
in order to understand fundamental physical
processes which involve nonlinear dynamics
and/or complex geometries, and which are
beyond analytical approaches.

The first attempts to model the ocean cir-
culation were made in the middle of the 20th
century, after the work of Ekman (1905) who
recognized the importance of the wind as the
major source of mechanical forcing. Sver-
drup (1947) derived a simple law that relates
the ocean currents to the curl of the wind
friction. Stommel (1948) and Munk (1950)
derived analytical models of the wind in-
duced ocean circulation in closed rectangular
basins using simplified dissipative laws. Both
the Stommel and Munk models afford simple
explanation of the westward intensification
of oceanic currents, such as observed for the
Gulf Stream or the Kuroshiwo. An impor-
tant threshold in computer performances was
reached in the late sixties, and this allowed
for the first full prognostic three-dimensional
studies of the ocean circulation (Bryan and
Cox, 1967; Bryan, 1969). These models were
driven by mechanical forcing (the winds and
a bottom drag) and by fluxes of salt and
heat exchanged with the atmosphere. They
could take into account the complexity of
the geometry and the nonlinear nature of
the oceanic currents. Ideally, these models
should be able to fill the gaps in the data

and give reasonable estimates of the ocean
circulation. However, because of their inher-
ent complexity, the poor knowledge of nu-
merous physical processes and problems with
the definition of coastlines, straits and sea-
mounts, they drift easily from any reason-
able state if no restoring terms are added to
the equations for temperature and sanility.
Thus, prognostic three-dimensional models
may sometimes look like expensive interpo-
lators and yield no very different results than
simpler inverse models do. Nonetheless, they
have produced useful estimates of the role
of the oceans in the thermal global budget
and the importance of the so-called conveyor
belt.

Our main concern is the representation of
irregular domains in numerical ocean models,
and their influence on the dynamics of the
currents. Models, so far, have only crudely
represented these irregular boundaries, ei-
ther in the vertical (the topography) or in the
horizontal (the coastlines). Our objective in
this thesis is to evaluate the accuracy of con-
ventional numerical methods in the presence
of irregular coastlines and to introduce more
accurate alternatives.

Furthermore, we suspect that irregular
coastlines have important but sometimes
under-estimated influences of the dynamics
of the currents flowing along them. The en-
ergetics of these currents are controlled by
the transfer of energy to smaller scales by
nonlinear interactions. These interactions
are likely to take place along the western
part of the oceanic basins where the cur-
rents are the strongest. In particular, as
the geostrophic balance (the main assump-
tion governing the dynamics of the currents)
in these regions breaks down, we hint at
possible interactions between the geostrophic
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and ageostrophic modes. We therefore focus
on models which are simple enough to rep-
resent geostrophic-ageostrophic interactions
on a large range of scales. A shallow water
model seems appropriate for these goals. The
dynamics are only two dimensional which al-
lows for very high resolutions in the horizon-
tal directions, as opposed to more complex
three-dimensional models where the same
level of resolution would be too expensive.
In one particular context, we introduce a
quasi-geostrophic (QG) model for compari-
son. This particular type of model repre-
sents only the geostrophic motions. Previ-
ous studies focusing on nonlinear interactions
were usually done in very idealized and reg-
ular domains using QG models. Hence, we
hope to make an interesting contribution by
conducting relatively simple experiments in-
volving idealized but still irregular coastlines
and somewhat more complex dynamics com-
pared to QG models.

The problem of accurately representing
the geometry of the domain in ocean mod-
els is divided in two sub-problems: repre-
senting the bottom boundary (the topogra-
phy) and representing the lateral boundaries
(the coastline). Topographical features (sills
or sea-mounts) are essential to the mixing
of waters of different properties, origins and
depths, and, therefore, their influence ex-
tends to the largest scales. Coastlines par-
tially enclose the oceanic basins. Their pres-
ence is essential to the comprehension of the
oceanic currents (such as the westward in-
tensification of currents). It was early re-
alized that a crude vertical representation
of the topography (z- or geopotential verti-
cal coordinate) could be detrimental to an
accurate modelling of the ocean circulation.
In particular, waters of different properties
tend to mix over sills with dramatic conse-
quences for the global ocean circulation if
the vertical discretization is too crude. To
remedy this problem, vertical terrain follow-
ing coordinates were proposed, despite var-
ious known limitations. However, the hor-
izontal discretization has not received the
same level of scrutinity. Most of the modern
oceanic models still crudely represent coast-
lines. A crude horizontal discretization has
several consequences. Straits may be under-
resolved and the associated exchange of wa-
ter modified: The strait of Gilbratar con-
trols the Mediterranean salt input into the
Atlantic; the Bering strait controls the fresh-

water input between the Arctic and the Pa-
cific and the Indonesian archipelago is notori-
ous for being the location of the so-called re-
turn flow of the vast thermo-haline conveyor
belt which circles the globe. A crude hori-
zontal representation has also retardation ef-
fects for fast oceanic modes (Kelvin waves)
which propagate along coastlines (Schwab
and Beletsky, 1998). For the wind-driven cir-
culation, little is known about the influence
of crude horizontal representations.

In order to study the influence of the
choice of the numerical method, we propose
to test several of them, and investigate which
one best handles irregular coastlines. We
therefore propose to test different staggerings
of the finite difference (FD) method and sev-
eral finite element (FE) formulations against
a spectral element method. The test-cases
we choose are very idealized in order to fo-
cus only on the dynamical aspects of two-
dimensional flows (no physical parameteri-
zations except for constant dissipative coeffi-
cients) and range from simple linear and non-
linear test-cases in square domains, to linear
and non-linear test-cases in smoothly irreg-
ular domains. The finite difference models
range from the conventional Arakawa C-grid
(preferentially used for regional studies —
e.g. Bleck and Boundra, 1981; Blumderg and
Mellor, 1983), to the conventional Arakawa
B-grid (preferentially used for global stud-
ies as in Bryan-Cox derived models — e.g.
Bryan, 1969; Cox, 1984), to the unconven-
tional A-grid (Dietrich et al., 1993).

We choose to use the FE method because
it has the decisive characteristic of repre-
senting boundaries more efficiently than the
more conventional FD method and because
it presents variable resolution capabilities.
Oceanographers, especially the tidal commu-
nity use FE models to represent tidal inter-
actions and resonances which occur at differ-
ent scales, from ocean basin to coastal in-
lets (Connor and Wang, 1974; Lynch and
Gray, 1979; Walters and Cheng, 1979). Some
of the modern FE models are derived from
the earlier models formulated by Lynch and
Werner (1987) and Le Provost et al. (1994).
Others used the QG approximation and pro-
posed a finite element formulation of the vor-
ticity equation for the general ocean circu-
lation (Fix, 1975; Dumas et al., 1982; My-
ers and Weaver, 1995); results were very en-
couraging. Unfortunately, no general circula-
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tion model based on the primitive equations
(explained below) has been proposed based
on the FE method and we try to determine
the reasons for this relative failure. On the
other hand, the spectral element method (an
extension of the finite element method) has
been used with a relative success by Iskan-
darani et al. (1995). Their method is based
on quadrangular elements; instead, we fa-
vor the use of triangular elements which of-
fer increased geometrical flexibility. Specifi-
cally, we propose to test a spectral element
model based on this discretization technique.
The apparent advantage of the spectral el-
ement method lies in the accepted advan-
tage of spectral methods (the accuracy and
the fast convergence with increasing resolu-
tion for regular problems) and the flexibil-
ity of an irregular grid. However, as with
the spectral method, there is always the pos-
sibility that Gibbs oscillations appear when
the fields being approximated are too irreg-
ular or under-resolved (the classical exam-
ple is the step-function). We try to solve
this problem by use of an adaptive method
which increases the resolution (the number of
triangles) in regions where the largest errors
in the solution are observed (to be defined
later). Finally, since finite element methods
are potentially more costly than conventional
finite difference methods due to the need for
more matrix inversions, the spectral element
method may be a good alternative because
its enhanced accuracy (compared to finite el-
ements) is not severely offset by an excessive
cost. In order to verify this statement, we
give an accuracy-to-cost function for all mod-
els.

Modelling the ocean is very challenging
due to the coexistence of many physical pro-
cesses at various spatial and time scales, from
the lowest scales (salt intrusion and viscous
boundary layers of a few centimeters), to sur-
face waves induced by wind or wave break-
ings, tides, geostrophic eddies, to the general
ocean circulation. Since all these processes
can interact with each other, it is virtually
impossible to reproduce and isolate with a
high degree of realism any of these processes.
Most often, approximations and parameteri-
zations are used to represent the small scale
(or sub-grid) phenomena and limit the ex-
plicit motions of the model to the scales of
interest. In this hierarchy of approximations,
the barotropic QG model represents the lead-
ing largest scale and lowest frequency ap-

proximation. There is no vertical structure
and no horizontal divergent motions such as
gravity waves. Then, somewhat more com-
plex is the shallow water model. The vari-
ables are the horizontal velocity, (u,v) and
the elevation of the free-surface, 7. It al-
lows for divergent motions but still does not
permit vertical structure. Layered models
are extended versions of shallow water mod-
els and allow for crude vertical (baroclinic)
variations. For more realistic vertical struc-
tures, the so-called primitive equations are
used. They are based in the incompressible
Navier-Stokes equations and use the Boussi-
nesq and hydrostatic assumptions. Further
improvement can be gained by using an non-
hydrostatic model which can represent the
small scale convection. However, the limita-
tion imposed by computer performance fixes
the length scales and the physical processes
which can be explicitly resolved. Some fea-
tures, such as synoptic eddies, are very dif-
ficult to resolve in global circulation mod-
els. These eddies are of the order of 10 to
100 km and are relatively small compared
to the basin scale (10,000 km). Nonethe-
less, some authors (Holland and Lin, 1975;
Treguier, 1992) stress the importance of rep-
resenting explicitly the role of the eddies in
the transfer of energy between the differ-
ent scales and their positive influence on the
(more realistic) mean fields. These processes
can not be perfectly mimicked by the alterna-
tive strategy of using eddy-parameterizations
and, therefore, this strategy is argued to be
flawed (Lesieur, 1997). Moreover, these pa-
rameterizations use coefficients difficult to
adjust to real observations when these coeffi-
cients are not simply “cosmetic”. Therefore,
a good general ocean model should be eddy-
resolving. However, since the required reso-
lution for a general circulation model of the
ocean is too high (10 km at mid-latitudes),
models should have, at least, variable res-
olution capabilities, in the sense that they
should have capabilities to follow and resolve
isolated eddies or westward boundary cur-
rents, while the rest of the domain is dis-
cretized at a coarser resolution.

It may be important to represent other
physical processes. The Topex-Poseidon
satellite mission, for instance, renewed in-
terest in the surface ocean large scale ac-
tivity: tides, Kelvin and Rossby waves and
synoptic eddies whose signature were mea-
surable on the surface elevation field of the
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ocean. Hence, a good general or regional
ocean model should also have a moving free-
surface which allows for fast barotropic grav-
ity waves. This was also pointed out by
studies of the vertical eddy-viscosity over
the rough topography of the Atlantic ridge
(Polzin et al., 1997). The large values of the
eddy-viscosity observed over the ridge, prob-
ably induced by external tides, imply that
the general circulation must interact with the
tides, i.e. the QG physics interacts with the
large scale gravity waves (ageostrophic hori-
zontally divergent dynamics). From a the-
oretical point of view, it seems also more
and more necessary to include ageostrophic
motions in numerical models, even in the
extra-tropics. The difficulty comes from ex-
plaining the cascade of energy down to the
molecular viscosity scale where the energy
can be dissipated. Indeed, the two dimen-
sional (and QG) dynamics tend to cascade
the energy up to the Rhines arrest scale (50
to 200 km) in typical basins and not down.
Therefore, there is no clear mechanism that
cascades down and dissipates the energy in
QG dynamics. This mechanism may come
from the non-linear interactions between the
geostrophic and ageostrophic modes. This
may be visible from spectral analysis (Stam-
mer, 1997) which show no particular cut-
off frequencies or wave-numbers separating
geostrophic and ageostrophic modes .

The presence of irregular coastlines may
also be important for the interactions of the
geostrophic and ageostrophic modes. First,
because it provides a forcing source at var-
ious wave numbers and, moreover, because
the westward side of ocean basins is the lo-
cation where the geostrophic approximation
is most likely to break down, i.e., where
the transfer of energy is most likely to oc-
cur. These preceding arguments imply that
general circulation models should allow for
the interactions between the geostrophic and
ageostrophic motions. The simplest system
that allows for such interactions is the shal-
low water equation system.

1To be precise, the elevation slope (related to the
velocity) peaks at a wave-number which ranges de-
pending on latitude between the Rhines scale and
the first baroclinic Rossby radius of deformation. It
is yet unclear how to interpret these results in terms
of separation of geostrophic and ageostrophic modes,
as the Rossby radius lies at the observational limit of
the instrument.

Also for physical reasons, even eddy-
resolving models need an explicit param-
eterization of dissipation. Although very
crude, this is usually done through an ex-
plicit eddy-viscosity (Laplacian operator) pa-
rameterization. Such a parameterization re-
quires an arbitrary choice for the dynami-
cal boundary condition at the walls (a prob-
lem which is exacerbated when higher or-
der dissipations are employed). We consider
herein only two boundary conditions. One
is the free-slip boundary condition and cor-
responds to fluids being free to slip along
lateral boundaries. There is some ambigu-
ity as to the precise definition of free-slip.
Pedlosky (1987, p. 183) takes the point of
view that it corresponds to there being no
viscous flux of tangential momentum across
the boundary (i.e., v[0v/0z + Ou/dy] = 0
at the wall). We take a less stringent defi-
nition by simply forcing the normal deriva-
tive of the tangential velocity to be zero (for
instance, Jv/0x = 0 on a meridionally ori-
ented wall). The latter choice is the one gen-
erally found in the literature. On straight
walls, the two definitions are equivalent, and
correspond to vertical vorticity vanishing at
the wall. On curved boundaries, either defi-
nition mentioned above results in non-zero
relative vorticity 2. This bears some dy-
namical consequences that we discuss below.
The second boundary condition is the so-
called no-slip boundary condition which cor-
responds to fluids that do not slip along walls
(the tangential velocity is zero), and leads
to strong shear along walls. This bound-
ary condition is considered to be the “real”
one because it is the one observed in lab-
oratory experiments at microscales. How-
ever, at the resolution used in modern ocean
models (1 to 100 km), it is not clear which,
if either, boundary condition is appropriate.
The present trend in ocean modelling is to
go towards higher Reynolds number (smaller
lateral viscosity) and higher resolution along
with no-slip boundary conditions. But the
level of resolution is still very far from suf-
ficient to represent realistic viscous bound-
ary layers, although inertial boundary layers
are definitely becoming more realistic. On
the other hand, authors experienced prob-
lems with the free-slip boundary condition.
In an idealized square basin and barotropic
ocean, it is observed that under single-gyre
wind forcing and decreasing eddy-viscosity,

2Pedlosky’s definition can lead to larger values of
the relative vorticity.
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the oceanic currents tend to jump to unre-
alisticly high values with no signs of tran-
sient eddies, whatever the resolution of the
model is. Hence, the free-slip boundary con-
dition prevents the transient activity which
usually allows for reasonable mean currents
by transporting the excess of negative vor-
ticity from the interior, through the inertial
layer to the walls, where it is dissipated (Ped-
losky, 1996). Using a barotropic QG approx-
imation, Dengg (1992) showed that free-slip
flows tend not to separate from a cape com-
pared to the clear separation observed with
no-slip flows, whatever the value of the wind
forcing. For all of these reasons, it seems
safer to use the no-slip boundary condition,
even if it requires unrealisticly large viscos-
ity values in order to resolve the boundary
viscous sub-layer. Nonetheless, these studies
fail to realize some important issues. The ab-
sence of transients and separation, under the
free-slip boundary condition, is connected to
the fact that most of those models fail to pro-
duce relative vorticity at the walls. This is
because the relative vorticity at the bound-
ary is specified to be zero for reasons of sim-
plicity. Therefore, those studies fail to note
that, even under free-slip, flows can produce
relative vorticity simply because of the coast-
line curvature. Hence, absence of transients
in a square basin is due to the idealized
straight walls. If the walls were curved (or,
in more general sense, irregular, as they are
in nature) , there is a chance that transients
would appear and play the important role of
transporting excess of negative vorticity from
the interior to the walls. For the same reason,
separation of the oceanic currents around a
cape can occur because the cape is round
and can produce the necessary vorticity re-
quired for separation. Of course, due to their
fractal nature, the curvature of the coastline
depends on the sampling resolution chosen
to represent the coastline. Therefore, the
knowledge about coastline curvature is sub-
jective. This, in itself, would be a good rea-
son for not considering the free-slip bound-
ary condition for practical ocean modelling.
Nonetheless, we would like to revisit the de-
bate between free-slip and no-slip and inves-
tigate if, at least from a theoretical point of
view (when the curvature is known), use of
free-slip is permissible. For this reason, we
discard all baroclinic processes and only con-
sider an idealized model of the ocean, the so-
called shallow water model, in presence of ir-
regular boundaries and driven solely by wind

friction. The description of both geostrophic
and ageostrophic motions in this model al-
lows for observations of the interactions be-
tween the two kinds of motions which may
be important, especially in presence of ir-
regular boundaries. In terms of physics and
geometrical representations, our study con-
trasts with and should be an improvement
over earlier theoretical studies based on the
QG approximation and rectangular basins.

The thesis is organized as follows. In
Chapter 2, we present the different numerical
methods and, in Chapter 3, we test them for
simple test-cases in order to understand the
effective truncation order and cost of these
methods in presence of irregular domains. In
Chapter 4, we further analyze the issue of
discretization in FD models and, in partic-
ular, how it relates to vorticity budgets of
the whole basin. In Chapter 5, we inves-
tigate the inertial run-away problem under
free-slip boundary conditions in irregular do-
mains. Conclusions are presented in Chap-
ter 6.



Chapter 2

Presentation of the Numerical

Methods

In this chapter, we review the three nu-
merical methods and the different models
we will use in this thesis. In particular,
we stress the limitations of each as it re-
lates to the discretization of irregular do-
mains. In the case of the spectral element
method, we contribute to the development
of the method by proposing our own adap-
tive technique. Furthermore, we present our
own implementation of curved spectral ele-
ments. Although curved elements are quite
natural to the spectral element method, we
found very little information in the literature
with respect to their implementation.

The idealized equations we propose to
solve are the shallow water (SW) equations.
These equations are grossly simplified com-
pared to the primitive equations. Nonethe-
less, the dynamical processes involved in the
formation of wind-driven circulations and
the interactions with irregular coastlines are
similar enough that we can restrict ourselves
to these equations as an introductory study.
The equations are

ou+u-Vu+ fkxu+gVn=

% Fuviu (2.1)
B+ V-(uh) =0 , (2.2)

where symbols are defined in Table 1. These
equations correspond to a Boussinesq, hydro-
static, homogeneous ocean in which we as-
sume that there is no vertical structure, re-
ducing the real three-dimensional (3D) prob-
lem to a simple two-dimensional (2D) prob-
lem. One remark concerns the treatment of
the gravity waves in these equations. The
natural speed of barotropic gravity waves is

VgH where g = 9.81m s~ 2 is the acceleration
due to gravity and H is the typical oceanic
depth. Since a reasonable value for H is
about 4000 m, the phase speed for barotropic
gravity waves is about 200 m/s. In order
to use reasonable time-steps and be able to
perform long time simulations, these modes
have to be slowed down by using a “reduced”
gravity. This approach is not inconsistent
with the actual physics of the ocean. In
fact, in the presence of a thermocline and a
deep layer at rest below the thermocline, the
SW equations with reduced gravity repre-
sent, in some sense, the first baroclinic mode
dynamics, i.e., the dynamics of the upper
layer. Indeed, this upper layer happens to
be the location of the most intense dynam-
ical events. The reduced gravity is defined
as ¢ = gAp /po where Ap is the jump in
density through the pycnocline and pg the
average value for the density of the ocean.
For example, the Kelvin waves observed in
the equatorial Pacific and along the western
American coast have phase speed of 2-3 m/s
(Boulanger and Fu, 1996; Ramp et al., 1997),
close to the phase speed of 3.16 m/s obtained
in a SW reduced gravity model where the re-
duced gravity is fixed at 1072m s~2 and the
depth above the thermocline is taken to be
1000 m. Hence, these equations are consis-
tent with a first order approximation of the
physical processes involved in the layer above
the thermocline.
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(z,y,2)
u = (u,v,0)
Ui
hy
k =(0,0,1)
v
h=n+hy
U = hu
q=(C+f)/h
(=k-(V xu)
f=fo+By
B =gn+ %u -u
14
g =0.01 m.s?
fo=1.028510"*s"!
f=1.607 10" m~'s~!
LRossby =31.22 km
L, L,

T = (Ts, Ty)

Q

0

n
C=u-Vu+fkxu

the coordinate system (east-north-upward)
horizontal velocity vertically averaged
elevation of the water surface taken from rest
height of the water column above the oceanic floor at rest
unit vector normal to the horizontal plane pointing upward
gradient operator
fluid layer thickness
vertically averaged horizontal flux of mass
potential vorticity
relative vorticity
Coriolis parameter varying with latitude
Bernoulli function
dynamic eddy viscosity
reduced gravity acceleration
defined at 45° N deg.
defined at 45° N deg.
the Rossby radius
the lengths of the basin (=1000 km when unspecified)
wind stress in m?s~2. For the single gyre wind
forcing, 7, = —10~*sin(7 y/L,) and 7, = 0.
basin domain
boundary of the basin domain
normal vector oriented outward the domain
Advection-Coriolis terms

Table 2.1: List of variables in (2.1-2.2)
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2.1 The Time Discretization

Several time-stepping schemes are considered
and used in conjunction with one of the spa-
tial discretization techniques proposed in the
following sections. For clarity, we review the
time-stepping techniques separately in this
section. Let us consider the equation

ou

— = F(u) .

5 = L W)

The time-operator can be finite-differenced
using a Taylor’s series expansion truncated
after the first term:

(2.3)

n+1 n

%) =
ot~ At

The simplest time discretization consists
then of integrating (2.3) given the previ-
ous time-step fields. This formulation corre-
sponds to the so-called explicit forward Euler
scheme and is only first order accurate

FO(AY) . (2.4)

"t =" + At F(u") . (2.5)
This formulation is usually recommended for
the integration of the dissipative or friction
terms, because no large precision is required
in time, as long as the small scale numeri-
cal noise are damped (and the scheme is sta-
ble). For ensuring stability, a condition on
the magnitude of the time step, At, applies.
For instance, when F(u) = vV?u (a viscous
dissipation term), this condition is

2UAL
Azx?

Unfortunately, the forward Euler scheme is
not neutral for various problems, in the sense
that some quantities such as mass, momen-
tum or energy are not conserved but may
decay or grow as the simulation is advanced
in time. When these quantities grow with
time, the model is of course unstable. This
happens, for instance, when F'(u) represents
the Coriolis terms. In order to better con-
serve certain quantities, a better scheme is
the explicit leapfrog scheme

<1. (2.6)

u" =" 2A F(u"), (2.7)
based on a second order truncation
ou un Tl — yn-t
—(tp) = ———— At?) . 2.
) = S+ 0(AP) . (28)

The leapfrog scheme is thus centered in time.
As the Euler scheme, this scheme is restricted
to certain conditions for stability. For in-
stance, if F'(u) represents an advection or a
wave propagation problem and using the def-
inition that the Courant number is given by

cAt
o AL (2.9)
where ¢ is a phase speed or an advection
velocity, the CFL (Courant-Friedrich-Levy)
condition implies that
C<1 (2.10)
for stability. The Leapfrog scheme is neu-
tral and conditionally stable for problems
involving, for instance, Coriolis or nonlin-
ear advection terms, and is unstable for
dissipative terms. Moreover, the leapfrog
scheme requires a time-filtering, because
the non-linearities and round-off errors lead
to a decoupling of the solution between
even and odd time steps. In order to
avoid restriction of time-step magnitude,
other time-integrations techniques were in-
troduced. They include implicit and semi-
implicit schemes. Nonetheless, these schemes
have to respect a certain condition on the
Courant number for ensuring a good accu-
racy. The semi-implicit ! scheme consists of
"=t 4 AL P2 (2.11)
where F(u"t1/2) = 1/2(F(u™*') + F(u"))
and the fully-implicit scheme (also called the
backward Euler scheme) is implemented as
" = u" At F(u"T) | (2.12)
The advantage of the semi-implicit treat-
ment is that the time-operator is centered
and second-order. For the Coriolis terms,
the fully-implicit is dissipative, and the semi-
implicit (centered in time) is neutral. For
the treatment of the fast linear gravity waves
present in the shallow water equations, the
advantage of using a semi-implicit or fully-
implicit technique is that there is no restric-
tion on time-steps (the domain of stability of
the models is extended) but at the expense of

! As termed in the atmospheric community in op-
position to the full implicit formulation but also
called the trapezoidal rule or the Crank-Nicolson
scheme in other fields.
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solving a matrix problem due to the coupling
of the variables through partial derivatives.
The disadvantage of these two techniques is
that some physical processes, such as gravity
waves, are slowed down if a too large time-
step is used (i.e., C > 1). This may have
consequences for the interactions of impor-
tant dynamical processes (the geostrophic
and ageostrophic modes) and, therefore, this
may lead to a less accurate representation
of the cascade of energy (as mentioned in
Bartello and Thomas, 1996).

The non-linear advective terms, u - Vu,
require a special treatment. When we con-
sider the computation of u”*!, they can be
computed using the previous time step as

" . Vu". Then, if the time-operator is
centered and leapfrog, the non-linear terms
are neutrally treated, otherwise, they are
off-centered for the other time-integration
schemes and may be unstable or dissipa-
tive depending on the time integration tech-
niques. The non-linear terms can be treated
implicitly as u” - Vu"*! or fully implicit us-
ing an iterative procedure. Another way is to
use an explicit 4th order Adams-Bashforth
formulation

At
Un+1 = U + E
23 F(u™) — 16 F(u"™') +5 F(u"7?)] .

(2.13)

The scheme is off-centered. It requires saving
fields from several previous time-steps and
the time-step is limited by a CFL condition.
Use of Runge-Kutta techniques is also possi-
ble, the fourth order one having the advan-
tage of good quadratic conserving properties,
such as for the energy. But Runge-Kutta
techniques require sub-step time integrations
as in this 4th order example:

'11

(u, t7)
F(u + At hy/2,t" + At/2)

< = F(u" + At ha/2,t" + At/2)
= F(u" + At h, 1" + At)

{ "+ = u" + At(hy + 2hg + 2h3 + hy)/6 .

(2.14)
The Runge-Kutta formulations are neutral
for all phenomena, very accurate, and require
a CFL condition. Adams-Bashforth formula-
tions are usually recommended for non-linear

N

integrations, but have the practical disad-
vantage of requiring smaller time-steps than
equivalent order Runge-Kutta integrations,
to the point that there is no definite advan-
tage of one technique over the other?. Here-
after, we tend to use the 4th order Runge
Kutta integration because of its accuracy
and because it does not require any time fil-
tering.

A completely different time-stepping ap-
proach consists of using the Lagrangian
framework (the grid follows the particles)
instead of the Eulerian framework implic-
itly assumed previously (the grid is fixed
in time). The Lagrangian time-integration
takes advantage of the fact that the dynam-
ical equations are simplified when written in
a Lagrangian form

Diu+ fkxu+gVn = % +vV?u (2.15)

DiInh+V-u=0, (2.16)

where Dy is the Lagrangian or total time
derivative. This is another way of saying that
the particle trajectory is the characteristic
line for the advective-only problem. Hence,
the problematic non-linear terms appearing
in the equations do not appear explicitly (ex-
cept for the term in the mass balance). The
main difficulty is in following the particles
that form the flow, and especially expressing
the right-hand-side terms. In order to avoid
this problem, the so-called semi-Lagrangian
formulation was developed which takes ad-
vantage of both the Lagrangian and Eule-
rian frameworks (see Staniforth and Coté,
1991, for a review). The right-hand-side
terms are discretized on the Eulerian frame-
work (in which derivatives are easy to ex-
press) and the time-derivative is treated on
the Lagrangian framework. The advantage
is in keeping a fixed grid or domain in time.
An interpolation procedure is used in or-
der to transfer information from the Eule-
rian grid to the Lagrangian grid (the par-
ticle trajectories). As the equations are
time-stepped along the advective character-
istic lines (the particle trajectories), there
are no limitations imposed by numerical sta-
bility on the magnitude of the time-step

2This was observed for a single gyre wind-driven
experiment in a square domain (the one used in Sec-
tion 3.4) using the second order C-grid FD model
given in Section 2.2.2.
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due to the advective terms. Therefore, the
method is effective in advection dominated
flows. To be precise, according to Bartello
and Thomas (1996), the method is effec-
tive only if the spectrum of energy is very
steep (not too much energy at the small-
est scales). Moreover, a semi-implicit or
fully-implicit method can be added to the
semi-Lagrangian treatment of the equations
(Robert, 1981). Thus the model has virtu-
ally no limitations due to stability regard-
ing time-step magnitude with respect to any
physical process described by the momentum
equations. However, the presence of orogra-
phy is troublesome in semi-Lagrangian meth-
ods, effectively reducing the allowable time-
step (Ritchie and Tanguay, 1996). The ad-
vantage of using semi-Lagrangian methods in
an ocean where the topography is steep is,
hence, unclear.

Since the equations are iterated in time,
the interpolation can be very damaging to
the conservation properties of the flow (mass
or energy). That is why modelers have to
use high order interpolation schemes (cu-
bic or more). Nonetheless, the interpolation
technique is usually responsible for a large
numerical dissipation, difficult to minimize.
On the other hand, these models can run
without explicit eddy-viscosity or diffusivity.
Proponents of the semi-Lagrangian method
never fail to mention that their models run
without explicit numerical viscosity, whereas
opponents note that semi-Lagrangian mod-
els offer no control over this implicit vis-
cosity. Another disadvantage of the semi-
Lagrangian technique when coupled to the
semi-implicit or implicit method is related to
the same argument against the semi-implicit
and implicit methods. Namely, that too
large a time-step distorts the physical pro-
cesses and misrepresents the real cascade of
energy.

2.2 Finite Difference Models

2.2.1 Introduction

The order of a finite-difference (FD) model
is given by a Taylor series expansion of the
numerical formulation. For instance, the first

derivative of ¢ given by a three point (equally
spaced) formula

06, _ b1 —dia

2
ox 2Azx +0(Az7)

(:El) (2.17)

ensures a second order accuracy. This means
that if resolution is doubled, accuracy in-
creases by a factor of 4. Higher order formu-
lations are possible (Dietrich et al., 1993),
but most FD ocean models use second or-
der schemes. In more than one dimen-
sional problems, the best accuracy is ob-
tained by using Cartesian-like grids (this in-
cludes curvilinear grids). And if there is
any stretching of the grid, a change of less
than 5% to 10% in size is usually recom-
mended between two neighboring computa-
tional cells.

When finite difference models make use of
Cartesian-like grids, a complex coastline is
represented by a series of artificial “steps”.
More precisely, where the orientation of the
boundary does not correspond to that of the
grid, discretization of the boundary intro-
duces a series of artificial “steps” along the
coast (see Fig.2.1). Curvilinear models exist
that tend to follow the coastline, but they
usually fail as soon as the complexity of the
coastline is too large (too many capes and
bays). A dramatic example is the description
of straits when only few points are available
(Fig.2.2). In that situation, the strait width
must take values in a set of discrete numbers
at the price of misrepresenting the width and
therefore the exchange of water masses. We
are concerned with the issue of coastline rep-
resentation in FD models and, particularly,
we want to investigate the accuracy of FD
models in presence of step-like lateral walls.
These steps can be viewed as singularities
(tips of land) around which the oceanic cur-
rents flow. A question therefore arises con-
cerning the influence of resolution versus the
influence of steps; the smaller the grid cell,
the larger the number of steps along a coast-
line. It is then not clear whether the solution
becomes more accurate (due to higher preci-
sion in the interior) or less accurate (due to
an increased number of singularities or steps
along the boundaries). If the model solution
is less accurate with increasing resolution in
presence of steps means that the model for-
mulation becomes inconsistent in presence of
steps. This may occur because FD models
are made to be consistent in open or closed
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rectangular domains but are not necessar-
ily in the more general case of irregular do-
mains. In particular, we raise the problem
of the computation of the advective and vis-
cous terms in presence of steps. On the other
hand, consistency should apply to the linear
inviscid SW models.

Real Boundary

Real strait

Model Boundary

Discretized strait

Figure 2.2: Effect of a poor resolution on the ge-
ometry of a strait. This one is widened by about
100%. Straits are of great importance because
they control the exchange of water between two
ocean basins.

The same problem arises in the vertical
discretization of the topography in three-
dimensional FD models of the ocean. In
models of Bryan-Cox type (Bryan, 1969)
based on the primitive equations, the vertical
axis is discretized at various constant depths.
They are called leveled or z-coordinate mod-
els. In these models, the topography follows
a step-like representation and therefore they
are prone to problems similar to the ones
mentioned above. For instance, the equiv-
alent difficulty in z-coordinate models to the
description of straits is the description of
sills. The depth of sills or other important
topographical features has to be taken from
a set of discrete depths. It was early real-
ized that this step-like representation had
detrimental effects on the overall circula-
tion. For instance, z-coordinate models have
meridional circulations which are known to
be sensitive to the details of how the bot-
tom boundary is represented. The issue is
that they do not accurately advect denser
waters along slopes and overestimate diapy-
cnal mixing (Gerdes, 1993; Roberts et al.,
1996; Roberts and Wood, 1997). Different
strategies were proposed to circumvent the
problem. The first strategy was to change
the vertical coordinate, z, to a following ter-
rain coordinate, o (Phillips, 1957; Blumberg
and Mellor, 1983). But o-coordinate mod-
els encounter other known limitations, such

as pressure gradient errors and artificial di-
apycnal mixing. A second strategy is to use a
layered (or p-coordinate) model (Bleck, 1978;
Bleck and Boudra, 1981). Roberts et al.
(1996) compared the behavior of the sim-
ulated North Atlantic in a z-model and in
an isopycnal model (p-model). In particu-
lar, they noted that the z-model has more
trouble in representing a realistic outflow
from the Greenland basin (GIN). Roberts
and Wood (1997) extended the study by sys-
tematically studying the effect of modifying
the topography of the sill at the outflow of
GIN and noted the high sensitivity of the
model. The same observation was made by
Winton (1997) in a more idealized geome-
try of the North Atlantic. Winton et al.
(1998) finally demonstrated that it is a res-
olution problem. When the resolution was
high enough to resolve the bottom boundary
layer and to resolve the slope, the flow is re-
alistic enough. However, the required resolu-
tion is unrealistic even for modern z-models;
therefore, they recommended the use of ex-
plicit bottom boundary layer models or the
use of isopycnal models (although those ones
have also their own limitations, namely re-
lated to the isopycnal layers intersecting the
topography or the surface.) From a differ-
ent perspective, Hirst and McDougall (1996)
noted that, in coarse resolution z-models,
the Gent and McWilliams (1990) turbulence
scheme remarkably enhances the conserva-
tion of water properties along topographi-
cal slopes. Another approach was proposed
by Adcroft et al. (1997). They showed in-
teresting use of “shaved” cells in z-models.
The topography is then piecewise linear, in-
stead of being piecewise constant as in usual
z-models.

All these difficulties in representing flows
along sloping topography should warn us of
possible problems for the horizontal circula-
tion in the presence of step-like coastlines.
Using a shallow water model, Schwab and
Beletsky (1998) found that a Kelvin wave
moving along a coastline is sensitive to the
presence of steps. The steps have mainly a
retardation effect on the wave, the effect di-
minishing with higher resolution. These re-
sults are reproduced in Figure 2.3 using the
C-grid model of Section 2.2.2. Four grids
in total were used: two grids with no rota-
tion of the basin showing no step along the
boundaries at 10 and 5 km resolution and
two grids with a 30 % o rotation of the basin
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Real Boundary

Model Boundary

Figure 2.1: Effect of the rotation on the discretization of a square domain. When the sides are no
more aligned with the discretization axis, step-like features occur along the walls.

relative to the discretization axes showing
steps along the walls at also 10 and 5 km
resolution. That higher resolution decreases
the retardation effect is consistent with the
idea that Kelvin waves should not be sensi-
tive to coastline details, at scales small com-
pared to the Rossby radius of deformation.
In Figure 2.3, for the highest resolution runs
(5 km), the retardation effect is still no-
ticeable but it is much weaker compared to
the runs at 10 km resolution. Since the ra-
dius of deformation is 31 km in these runs,
these results imply that we should resolve
the Rossby radius with about ten points for
a second order formulation. This retarda-
tion effect was also noted in circular lakes
by Beletsky et al. (1997) for different kinds
of staggering of the grid and vertical repre-
sentations. Omne consequence for modelling
the ocean is that the fast modes of an ocean
basin (the Kelvin modes) will be misrepre-
sented, especially if the model resolution is
coarse. Therefore, transient responses of the
ocean, such as the El-Nino Kelvin wave along
the Western America may be retarded, which
may have consequences on the period of oc-
currences of El-Nino events according to the
delayed oscillator theory (Schopf and Suarez,
1988). For instance, in the study of Soraes
et al. (1999), there are only two points to
represent the Rossby radius of deformation
at 20° North. This means that their results
are questionable concerning the flux and the
timing of Kelvin waves leaving the equator
and going poleward.

2.2.2 The Three Staggerings Used

To ensure stability in primitive variable or
shallow water models, the variables are usu-
ally staggered in space, in the sense that
the discrete location of the different vari-
ables may differ. Several standard staggering
techniques are used in ocean modelling: the
non-staggered A-grid (Dietrich et al., 1993),
the B-grid (Bryan, 1969; Cox, 1984) or the
C-grid (Bleck and Boudra, 1981; Blumberg
and Mellor, 1983), as illustrated in Fig. 2.4.
The A-grid leads to spurious modes of os-
cillation, fed by non-linear interactions and
round-off errors. These spurious modes are
ultimately unstable, but the A-grid can be
stabilized if higher order formulations are
used. The B-grid has better dispersion errors
at coarse resolution for propagating plane-
tary or Rossby waves than C-grid, and does
worse for pure gravity waves (Batteen and
Han, 1981).

FD models can be formulated to con-
serve energy and/or enstrophy (Arakawa,
1966; Sadourny, 1975; Abramopoulos, 1988;
Arakawa and Hsu, 1990; Hélm, 1996). For
instance, it is relatively easy to formulate
an A-grid energy conserving model, from
the point of view of the finite volume (FV)
method. But conserving the energy exactly
only retards the occurrence of spurious nu-
merical noise (this model is detailed in Ap-
pendix A). If the model was also enstrophy
conserving (which, according to Abramopou-
los, 1988, is achievable but very expensive),
the occurrence of spurious numerical noise
would be even more difficult and hence, the
model would be stabilized.
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Figure 2.3: Elevation field for the Kelvin retardation problem in presence of steps along the walls
at two different resolutions. « represents the rotation angle of the grid relative to the discretization
axes. a, 10 km, @ = 0; b, 10 km, @ = 30%; ¢, 5 km, a = 0; d, 5 km, a = 30°. The dashed line is the
-0.01 m contour, the solid lines are contours from 0.1 to 1.0 m with an increment of 0.1 m.
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Figure 2.4: The three major horizontal stagger-
ings for the primitive equations. Left the A-grid,
center the B-grid, right the C-grid. Velocities
components are located by the arrows, the pres-
sure or elevation point is located by a grey disk.

The C-grid Formulation

The C-grid derived models, such as the
popular POM family of models developed
from Blumberg and Mellor (1983), tend to
be used preferentially for high-resolution re-
gional studies. The C-grid FD model used in
this thesis is the one formulated by Sadourny
(1975). This model is enstrophy conserving.
The nonlinear terms are split into a gradi-
ent term and a rotational term. To simplify
the following discussion, we leave the time
derivative being continuous. Using standart
notation, the discretized shallow water equa-
tions are

du -V + DB = S (218)
= _ Ty

3tv+q U +DyB:ﬁ+Fy (219)
Om+DIU+DSV =0 . (220

The discretized potential vorticity is given by

—y .
q= (f+¢)/h" where ¢ = D, — Dju is
the relative vorticity. The discretized mass
fluxes are given by U = uhx, V = vhy,
the discretized Bernouilli function is given by

14

B=gn+ %(Fm +v_2y) and F, and F), are the
viscous forces. The off-centered differencing
operators in the x direction are defined by

, bij — Pi-1j 4 Pit1,j — bij
D — 9, D — ). .
T ¢ Az Y ¢ Ax ?

and the averaging operator defined by c;Sx is a
double point average =3(¢;; + ¢i_1,;). Sim-
ilar definitions apply along the y direction.
(2.18), (2.19) and (2.20) ensure a second or-
der accuracy to the computation of the ve-
locity and elevation fields. The kinematic
boundary condition is no normal flow and the
dynamic boundary condition is free-slip, un-
less otherwise specified. The C-grid model,
in which the non-linear terms have been split
into a rotational part and a gradient part,
requires that vorticity be specified at bound-
ary points. We set the relative vorticity to
zero along the model boundary, which is con-
sistent with the free-slip boundary condition
along straight walls.

The B-grid

The B-grid is employed in the popular MOM
family of ocean models. The MOM model
is a z-model and was developed from Bryan
and Cox (1967) and Bryan (1969) and fol-
lowing investigators. The B-staggering suits
more naturally the no-slip boundary condi-
tion, since the velocity points are located at
the corners of the computational cell. Unlike
the C-grid, there are no ambiguities in the
way the dynamical boundary condition is im-
posed at tips of the continents. The B-grid
is also well known for having a better disper-
sion relationship for Rossby waves at very
coarse resolution than does the C-grid (Bat-
teen and Han, 1981). This makes this stag-
gering technique more suitable for coarsely-
resolved global climate studies. However, we
are interested in how this configuration be-
haves in the presence of steps along the walls.
From Cox (1979), it appears that the B-grid
model under the no-slip boundary condition,
just as the C-grid (Adcroft and Marshall,
1998), is not very sensitive to the presence
of lateral steps, therefore, we prefer to focus
on the behavior of the B-grid model with a
free-slip boundary condition.

On the B-grid, the discretized shallow wa-
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ter equations become

Oyu +uDgu +vDyu

—fotg Dy = =5+, (2.21)
h
O +uDgv +vDjv
tfu+g D, = 2% +F,  (2.22)
h
On+ DU+ DSV =0  (223)

where U = uﬁy, V= vﬁy. The differenc-
ing operator Dy (and Dy in the similar way)
are defined by

Giv1,j — bi1,j
2Azx

Eq. (2.21) and (2.23) ensure a second or-
der accuracy to the numerical solution. The
difficulty when applying the free-slip bound-
ary condition to a B-grid model is that it
requires a prognostic equation for the veloc-
ity component tangential to the wall (in the
more general situation of a irregular geom-
etry, the B-grid would require equations for
velocity nodes at tips of land-cells). There-
fore we use,

D3¢ =

-
Oyus + usD2us + g Dyn* = h:; + Fy (2.24)

where s represents the tangential direction,
and n*, the elevation point along the wall
at half a point from the considered velocity
node.

The A-grid

The argument behind using an A-grid con-
figuration is that the C-grid presents the dis-
advantage of separate locations for uw and
v-components of the velocity. This means
that, at coarse resolution, the truncation er-
rors in the computation of the Coriolis terms
can be fairly large. According to Adcroft
et al. (1998), these errors trigger numerical
noise when the Rossby radius is not well re-
solved. From a programming point of view,
having all the variables located at the same
points makes everything easier (physical pa-
rameterizations, conservative FV formula-
tion, graphic output, ...). The A-grid ar-
rangement of the variables is known to be an

unstable second order formulation. Nonethe-
less, it is possible to run an A-grid model if
all the terms are accurate at fourth order. A
high-order method is cost effective in terms
of accuracy (Sanderson, 1998), as long as the
physical processes are resolved and the spec-
trum of the resolved fields is steep enough.
Dietrich et al. (1993), hereafter D93, de-
veloped such a model. The model is three-
dimensional and uses a no-slip boundary con-
dition. We modify the model to represent the
shallow water equations, keeping the fourth
order formulation for all the terms (except
the diffusion), and we incorporate the free-
slip boundary condition. All the equations
are prognostic and integrated explicitly in
time using a 4th order Runge-Kutta scheme.
On an A-grid and using the same notation,
the shallow water equations lead to

Opu + uDy gu + vDy yu

—fv+g Dygn = %“" +F,  (2.25)

Opv +uDyzv +vDy v
+futg Dign="L+F, (226)
o + D4,x (uh) + D4,y (Uh) =0 (2.27)

The differencing operators, Dy, and Dy,
are fourth order operators. Equations 2.25—
2.27 ensure a fourth order accuracy to the nu-
merical solution, except for the viscous terms
F, and F,, which remain second order. The
difficulty with the A-grid at fourth order is
to retain the fourth order right to the wall.
This is possible only if off-centered differen-
tiation formulae and interpolation are used.
If this is not done, the model tends to be un-
stable with free-slip boundary conditions (as
demonstrated in the next chapter.)

2.3 Finite Element Models

2.3.1 Introduction

In this section, we present several finite ele-
ment (FE) models, all based on triangular el-
ements. The development of the FE method
was contiguous to the development of com-
puters in the early 60s and 70s. By the end
of 70s, they were well established. They be-
came particularly popular in engineering for
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the computation of stresses over structures,
and somewhat popular in fluid mechanics
and electricity. In all cases, they were and
are still used because of the great flexibility
they offer in term of geometrical representa-
tion, sometimes despite the cost or the lack
of stability of the method. In structural me-
chanics, they have the decisive advantage of
being able to follow the deformation of the
mesh due to stress (Lagrangian time formula-
tion), making the methods quite “natural” to
this field. In electricity, the absence of non-
linear terms in most applications render the
method reasonably successful. But in fluid
mechanics, the method has always suffered
from a lack of overall stability, from a lack of
accuracy in the computation of the advective
terms and from a very large cost, to the point
that most commercial models used for en-
gineering applications preferentially use the
finite volume (FV) method along with near
regular meshes (c.f., IDEAS, Star-CD, ...).
The disadvantage of the F'V methods is that
they are usually of low order and that they
require near regular meshes to ensure good
performances. This means that they are not
very suitable to model the ocean.

The problem of stability in FE meth-
ods in fluid mechanics was early analized
by Ladyzhenskaya (1969), Babouska (1971)
and Brezzi (1974), who gave their names to
the so-called Ladyzhenskaya, Babouska and
Brezzi (LBB) stability condition. Their work
focuses on the Stokes equations and they
demonstrated the need, in fluid mechanics
FE methods, for using different basis func-
tions for the velocity and pressure. This was
equivalent to staggering the grid in space, as
was done for the FD methods. Furthermore,
not any combination of basis functions satis-
fies the LBB condition (Fortin and Fortin,
1985; Pierre, 1988; Idelsohn et al., 1995;
Le Roux et al., 1998). Arnold et al. (1984)
and Fortin and Fortin (1985) emphasized
that one simple way to stabilize equal-order
schemes is to add the so-called bubble func-
tion, and that this method does not lead nec-
essarily to an additional cost, thanks to static
condensation techniques (some easy manual
Gaussian elimination before solving numer-
ically the matrix problem). But, since, ac-
cording to Pierre (1988), these methods are
equivalent to adding a penalty term in the
fluid equations, they may be over-dissipative
in the context of unsteady flows and the more
general Navier-Stokes equations.

Mainly, the LBB condition comes down
to increasing the order (or the number of
degrees of freedom) of the basis functions
for the velocity compared to the basis func-
tion for the pressure. However, one unre-
solved issue related to the LBB condition is
its relevance for the shallow water equations.
The three shallow water equations are sim-
ilar enough that they can be generalized to
one vector equation:

ov.  OF 0G
o oty =l (2.28)
where V. = (uh,vh,h)t, F = (uuh +

gh?/2,uvh,uh)t, G = (uvh,vvh+gh?/2,vh)!
and H includes the Coriolis, dissipation and
forcing terms. Therefore, there is no intuitive
reason for lowering the order for one variable
compared to the others. The only loss of sim-
ilarity between these equations comes from
the boundary conditions which only apply to
the velocity. This is however a slight loss of
similarity which only applies to the elements
sharing a face or a vertex with the bound-
ary. Hence, the need for lowering the order
for pressure may not apply to all elements of
the mesh. There is evidence, however, that it
is better to use a combination of basis func-
tions that fulfills the LBB condition, even
in the broader context of the shallow water
equations (Le Roux et al., 1998). Our own
experience pinpoints that the behavior of the
solution depends on the application. We are
definitely missing a general theory of stabil-
ity for the FE approximation in the broader
context of the shallow water equations.

The fact that the pressure basis functions
have to be of lower order compared to the ve-
locity basis functions means that the overall
truncation order of the stabilized FE meth-
ods for the shallow water equations is proba-
bly lower than the one permitted by the ve-
locity basis functions. And, since the other
disadvantage of these stable FE methods is
the cumbersome and time consuming solving
of a large matrix problem (especially when
all the variables are coupled), it is doubtful
that these methods can compete with todays
FD ocean models in terms of cost and accu-
racy.

We focus herein on four different FE mod-
els: the Lynch and Werner model (1987;
1991) (also called the Quoddy model and the
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Figure 2.5: Triangulation of the domain.

only one of the four used for coastal oceanog-
raphy), the Le Roux et al. (2000; hereafter
LLS) model, the Hua and Thomasset (1984)
model and the Peraire et al. (1986; here-
after PZM) model. Only one model, the LLS
model, among the four satisfies the LBB con-
dition of stabilty. The Quoddy and the PZM
models use a non-staggered (i.e., equal order)
formulation of the variables and therefore re-
quire some kind of stabilizing “trick” which
we will present and discuss. Due to their
equal-order formulation, these two models
are the simplest, in some sense, of the four
for the same reason that the A-grid FD for-
mulation is simpler than the other stagger-
ing techniques. In the context of the finite
elements, there are some additional techni-
cal advantages to using non-staggering for-
mulations which stems from a lower number
of matrices to define and to inverse. Also,
it unifies the use of gradient or divergence
operators. In general, equal-order models
are fairly easy to implement from scratch.
Hence, they can be more appealing than
more complex LBB complying formulations.

2.3.2 The Galerkin Formulation

Most FE methods are based on the Galerkin
formulation. In these models, the domain, €2,
is broken up into a set of conformal elements
(conformal in the sense that all elements con-
nect to neighboring elements through com-
mon vertices). The form of the elements is
rather unspecified but triangles or quadran-
gles are usually recommended. We favor the
use of triangles (Fig. 2.5) because complex
domains are more easily divided into trian-
gles than quadrangles. For each vertex of the
mesh, M;, and in the context of linear finite
elements, there is an associated basis func-

+1

V

4‘

0 0

Figure 2.6: ¢;, the basis function related to
the node M;.

tion, ¢;. This basis function is piecewise lin-
ear in each triangle to which M; belongs and
forms a “hat” on top of M; (Fig. 2.6). Over
the rest of the domain, the basis function is
zero. Let us consider the equation

ou ou
— = 2.2
ot ox (2.29)

u can be approximated by @ = >, i;$;. The
finite element approximation of this equa-
tion consists on multiplying 2.29 by a test
function and then integrating the resulting
equation over the whole domain. There is a
certain freedom upon the choice for the test-
function, though. In the collocation method,
the test-function is defined as the d(x — x;)
(the Dirac-delta function). Then, the formu-
lation bares similarities to the FD method.
If both the basis functions and the test-
functions are piecewise constant, the formu-
lation is similar to the FV method. The
Galerkin approximation is to take for the
test-function, ¢;, which is used to approx-

imate w. Thus, the discretized version of
(2.29) is
Ot . 0%

(2.30)
where (.,.) is the inner product defined as
(f9) = [o fgds. This is equivalent to say
that the errors generated when discretizing
(2.29) are projected onto another subspace
of the function space (supposedly, a higher
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Figure 2.7: ¢o is the basis function related
to the node x5 = 0.

degree polynomial subspace). This formu-
lation is said to be “weak” and is also re-
ferred to as the weighted residual approach.
In some particular cases, it can be shown
that the model equations can be described
by a functional. This leads to the so-called
variational principle. In such a case, the
Galerkin approximation minimizes the ap-
proximation errors. Since the piecewise lin-
ear basis functions, ¢;, are not orthogonal,
the terms (¢;, ;) lead to a matrix that has
to be solved at each iteration in order to ad-
vance the solution in time. This matrix is
usually referred to as the mass matrix and
noted M. M is usually non-diagonal, but
sparse. In order to gain computational ef-
ficiency, M is sometimes “lumped”; that is,
all non-diagonal terms are summed onto the
diagonal to form an artificial diagonal mass
matrix. This method bears similarities with
the collocation method, as opposed to the
Galerkin method, and can lead to a loss in
accuracy.

We now consider the issue of using irregu-
larly spaced grid points in FD and FE meth-
ods. In the FD method, an irregular spacing
of the nodes leads to a loss of order. Let us
consider the equation

df

dz
Imagine three nodes located along one axis.
The length between Node 1 and node 2 is
A, and node 2 and node 3 are distanced by
B. Without loss of generality, we can impose
x1 = —A, z9 = 0and z3 = B (Fig. 2.7). The
usual centered FD discretization of (2.31) at
T9 gives

_fzs—h

A+ B

u

(2.31)

us (2.32)

As fi = fo = AL (23) + A2LL (22) + O(A3)
2
and f3 = fo+ BL (3) + B2 L (z2) + O(B?),

dx?
u:fa—flzﬁ
T A+ B dzx

+(B — A) ;Ff (z9) + O(A? + B?)

72

(z2)
(2.33)

This formulation is second order if A = B
but only first order if A # B.

The same occurs for the FE method. Us-
ing linear “hat” functions to discretize this
axis, the Galerkin discretization of (2.31)
with the basis functions at node 2 as the test
function

df

(u, pa) = (%7¢2> (2.34)
leads to
1/2(f3 = f1)
(2.35)

where v and f are now approximated by
U= 3y guidi and f = 5, 5 figi. To
demonstrate the problem of using irregular
spacing, we use a different approach which
consists of using polynomials of increasing
order that satisfy (2.31). The maximum or-
der for which (2.35) is consistent gives the
truncation order of the scheme. If we take
f(z) =1 and u(z) =0, (2.35) is exactly sat-
isfied. If we take f(z) = z and u(z) = 1, the
same applies. But if we take f(z) = 22 and
u(z) = x, the equality is no longer true for
the general case of A # B, which means that
the numerical method is only first order when
the spacing is not constant. Therefore, we
expect the order of any FE and FD method
to be reduced in the presence of unstructured
meshes.

2.3.3 The Different Finite Element
Models Tested

The Quoddy Model

The Quoddy model of Lynch and Werner
(1987; 1991) is a full 3D baroclinic finite ele-
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ment model. This model was successfully ap-
plied for coastal and tidal studies on the Sco-
tian Shelf (Hannah et al., 2000) and the Van-
couver Island area (Foreman et al., 2000).
It was modified to model the shallow water
equations, retaining the main characteristic
of the Quoddy model, which are: equal order
of approximation for velocity and elevation,
the divergence of the vertically integrated
momentum equations can be recast by us-
ing the mass balance equation and eliminat-
ing the divergence of the vertically integrated
mass flux. This yields a prognostic equation
for the elevation of second order in time (a
wave equation). Solving numerically for the
three equations (two momentum equations
and one wave equation) is easy and leads to
a stable model, but, does not balance mass
locally. To guaranty a better local conser-
vation of mass, a weighted mass equation is
added to the wave equation (the mass equa-
tion can also be viewed as a penalty term).

62
6—t727_ -[V-(Huu) +gHVn+fx Hu
—F, — vV + 1 [gt +V.(H )] -0

(2.36)

The rational for mixing two equations that
should be satisfied independently is that
equal-order FE methods are usually unsta-
ble, the same way that the non-staggered
A-grid is usually unstable for FD methods.
Hence, the model is stabilized using physical
principles (the divergence of the momentum
equations) at the price that the local mass
balance is not necessarily satisfied. This
may have some influence on the dynamics of
oceanic flows.

The Peraire et al. (1986) Model

PZM developed an interesting model us-
ing equal-order interpolation and a two step
explicit time-integration. First, mean val-
ues are computed for each triangle centroid
from fluxes at vertices and then values at
vertices are computed from flux computed
at triangle centroids. This model is part
of a broader family of Taylor-Galerkin for-
mulations. We reproduce the demonstra-
tion about the Taylor-Galerkin formulation

of Priestley (1992). Starting from the fol-
lowing prognostic equation in a conservation
form 5
U
—+V-F=0,
ot
the idea is to increase the accuracy of the
finite differencing of the time operator by use
of a Taylor’s series:

ou™
U =u"+ A _815

(2.37)

o*u"
+ = At2 +-

ot?

2.38
By substituting the original equation 52.373
in the Taylor’s series and truncating the se-
ries after the second order term yields

1 F"
s :u”—AtV-F”+§At2V [8— V- F”]

ou
(2.39)
The Galerkin formulation of this equation in
a weak form is

u”, i) = —AHV - F" ¢;)
o for

(un—i—l _

F", V¢
5, vV FL Vi)

/VF"

where u and F' are discretized using the
piecewise linear basis functions. The dif-
ficulty at this stage is to express JF/0u.
One way found by PZM was to approximate
OF/0u by a piecewise constant function and
to express the one-step time integration as a
two step time integration. Thus, if we first
integrate forward in time over half a time
step

(wWet?, ge) = ("

(2.40)

‘1 $ydl

A
a¢e> - t(v Fna¢e> )

(2.41)
where ¢, is the piecewise constant basis func-
tion (one over one triangle and zero over the
rest of the domain; the variables with the
underscript e are approximated using these
basis functions). The Taylor development of

Ft1/2 at first order

Fr1/2 o ——At(aFV F) (2.42)

ou
leads to the approximation

n _ (n+1/2
(BFV F) _—(®

At
ou St

— F”)

(2.43)
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Since the term on the left hand side is ap-
proximated using piecewise constant basis
functions, (2.41) becomes

(W'~ u”, ) = At
(~V - F" ) + (F2F1/2 B2, V)

- / (FH/2 — F7) . n ¢ydl
bd
(2.44)

In fact, we can integrate by part the first
term on the right hand side in order to fur-
ther simplify the equation

(Wt — ", ) = At
[(F21/2 — F2 4 F", V)

—/ (P72 B L ") . n ¢;dl
bd
(2.45)

Because of the use of linear basis function the
first product in this equation can be further
simplified to

(' —u", ¢i) = At
(F212,9,)

—/ (P72 B L ) . n ¢;dl
bd
(2.46)

This method presents some similarities with
the Lax-Wendroff scheme. It is second or-
der for smooth problems but might be over-
dissipative at shocks. For purely advective
problems, PZM found that this formulation
behaves very well and we found that it out-
performs the Quoddy model (not shown).

The Hua and Thomasset (1984) Model

Hua and Thomasset (1984) developed a fi-
nite element model staggered in space, using
discontinuous linear non conforming (P{V¢)
basis functions for the velocity (Fig. 2.8) and
the usual linear basis functions (P1) for the
pressure. This formulation leads to a diag-
onal mass matrix for velocity, which leads

+1

Figure 2.8: The discontinuous linear non
conforming basis function for the PN¢ — P;
element of Hua and Thomasset (1984) associ-
ated with each face. The basis function takes
the value of 1 over the face and -1 at the op-
posite vertices.

to a simplified matrix problem to solve for
the elevation when semi-implicitly discretiz-
ing in time. They claim the model to be
oscillation-free, although LLS demonstrated
that the Hua and Thomasset model does not
satisfy the LBB condition of stability for the
Stokes flow problem. In the shallow water
context, it shows some signs of instability
(not shown). After some tests, we chosed
to integrate the equations explicitly in time
using a Runge-Kutta integration technique
instead of the semi-implicit technique pro-
posed by Hua and Thomasset because the
instability problem was then less severe.

The Le Roux et al. (2000) Model

LLS proposed to use a semi-implicit semi-
Lagrangian time integration along with a
spatial FE discretization that satisfies the
LBB stability condition. The particularity of
their choice for the basis functions resides in
using macro-elements. Each macro-elements
is cut into four sub-triangular elements. The
basis functions for the velocity are linear in-
side each sub-triangle and the basis functions
for the pressure (or elevation) are constant
(see Fig. 2.9). The equation for the elevation
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b
~J

Figure 2.9: The discontinuous constant ba-
sis function for pressure over the macro-
element of LLS. The macro-element is cut
into four sub-triangular elements. There
are three pressure basis functions over one
macro-element, one for each exterior sub-
triangle. They take the value of one over the
exterior sub-triangle and 1/3 over the inte-
rior triangle.

can be inverted locally. Hence, the solution
of the coupled system of shallow water equa-
tions can be reduced to solving Helmholtz-
like coupled equations for the velocity com-
ponents. In order to interpolate the vari-
ables at the previous time step on an un-
structured mesh, they also proposed a high
order kriging method (see Trochu, 1993, for a
review). Using this interpolation technique,
they found that the model was performing
very well for the purely advective problem.
However, the application to a finite element
shallow water model was somewhat disap-
pointing. The high order method destabi-
lizes the model (personal com.). Therefore,
a low order kriging method had to be used,
leading to potentially high artificial viscosity.
The mass was not conserved, forcing LLS to
add a mass corrector. Another disadvantage
of the LLS formulation is the fact that the
elevation basis functions are piecewise con-
stant. This means that the truncation order
of the model for the elevation is lower than
that for the velocity and might lower the or-
der of the velocity as well, since the equations
for velocities and elevation are coupled in the
shallow water equations.

2.4 The Discontinuous Spec-
tral Element Method

2.4.1 Introduction

The first development of the spectral element
(SE) method occurred in the early eight-
ies (Patera, 1984). The SE method allows
for irregular geometries and high accuracy
because of varying order polynomials inside
quadrangles or triangles that form the mesh.
The main distinction between the FE and SE
methods stems from the type of basis func-
tions used to approximate the model equa-
tions. In FE methods, the basis functions
are usually constructed for one specific or-
der of the scheme (they are derived from La-
grange interpolators on regular grids inside
each element). They need to be recomputed
as the order of the FE method is modified.
In SE methods, the basis functions are hier-
archical and follow easier rules of construc-
tion (for instance, they can be derived from
Chebyshev or Legendre polynomials). As the
order is augmented, the former set of basis
functions is simply augmented by a new set
of polynomials constructed from the previ-
ous set. Therefore, in SE methods, the order
of approximation is user-dependent and can
even vary from element to element. There
seem to be numerical advantages in terms
of matrix inversion in using the Chebyshev
or Legendre polynomials instead of regularly
spaced Lagrange interpolators. The latter
lead to poorer conditioned matrices as the or-
der of the scheme is augmented (Le Provost
and Vincent, 1986). As with the spectral
method, the accuracy of SE method is ex-
ponential with increasing polynomial order.
However, the SE method offers much higher
flexibility in terms of geometrical representa-
tion. And, contrary to the spectral method
for which Gibbs oscillations are prone to
occur in under-resolved regions, in the SE
method, one can easily increase the polyno-
mial order (p-refinement) or the number of
elements (h-refinement) in the underesolved
regions. Using a polynomial order greater
than two, we can also expect that SE meth-
ods are more accurate than conventional FD
or FE methods, and that the convergence
of the solution with increasing resolution is
much faster.
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We noted two applications in ocean mod-
elling using quadrangular SE. The first by
Ma (1993) and the second and more success-
ful by Iskandarani and Haidvogel (1995). Us-
ing quadrangles, it is relatively easy to con-
struct an orthogonal basis of cardinal func-
tions which greatly facilitates the computa-
tion of nonlinear terms and renders trivial
the matrix problem to be solved, provided
the equations are prognostic and solved ex-
plicitly in time (leapfrog, Adams-Bashforth,
Runge-Kutta).  One limitation, however,
of using continuous basis functions for the
primitive (or shallow water) variables is that
for stability the maximum polynomial order
for approximating pressure (or elevation) has
to be lowered, compared to velocity (Iskan-
darani and Haidvogel, 1995). Lowering the
maximum polynomial order of one variable is
similar to staggering the variables in space in
finite difference methods and is also similar
to satisfying the LBB condition for finite ele-
ment methods (see previous section). On the
other hand, the method leads to a large but
sparse matrix problem if the equations are
solved implicitly in time, or if a Helmholtz or
Poisson-type of system has to be solved. The
only disadvantage of using quadrangles com-
pared to triangles comes from the difficulty
of discretizing an irregular domain into quad-
rangles, the triangles offering more flexibility.
Using triangles (Sherwin and Karniadakis,
1996), there is no orthogonal basis of cardinal
functions. Therefore, a large matrix prob-
lem has to be solved at each time-step, even
when the equations are discretized explicitly
in time. Moreover, the computation of non-
linear terms requires a tedious transfer from
the spectral coefficients to values at Gauss-
like points, and back to the spectral space.
However, in restricted applications, recent
developments led to simpler and cheaper al-
gorithms. Lomtev and Karniadakis (1999)
(hereafter referred as LK) avoid the difficult
problem of defining a set of continuous high
order polynomials over triangles by reverting
to a discontinuous formulation which leads
to a local matrix problem in each element-
triangle. This is only possible if all the equa-
tions are prognostic (as they are for shallow
water models) and treated explicitly in time.
Luckily, a hydrostatic Boussinesq ocean with
a free-surface can be modeled using this sim-
plified spectral element method. Further-
more, their model appears to be stable al-
though the same set of basis functions is used
for the velocity and pressure. Thus, their

method does not comply to the LBB condi-
tion. Finally, this method allows for an easy
implementation of a time-variable mesh that
we introduce in Section 2.4.3.

2.4.2 The Model Formulation

The matrix problem to be solved in each ele-
ment is rather small for the order of the spec-
tral element we choose to test (between 3 to
7). Therefore, the constraint of orthogonal-
ity over the set of polynomials for a cost-
effective model is made less stringent. Thus,
we introduced an even simpler set of basis
functions compared to LK by simply using a
set of products of Legendre polynomials with
a triangular truncation.

¢i(£13£23t) = Ll(ﬁl)Lk(€2)a I+ k < N,
(.47)

where n, is the maximum order of the poly-
nomials and ¢ is indexed as [ runs from 0 to
n. and k runs from 0 to n. —[. The solution
can be expressed inside the element j by

f(&,&,t) = Zaij(t)fﬁi(fl,&,t) . (2.48)

For the elements sharing a side with the
boundary, the projection of the basis func-
tions onto another set of basis functions
which are always zero right at the bound-
ary ensures the different possible boundary
conditions (no-normal flow, free-slip, no-slip
or inviscid)

¢; = Li(&1)(Le(&2) £1) .

The projection method consists of comput-
ing coefficients in the new basis using the re-

(2.49)

lation .

(f5¢)=(f9) (2.50)
which satisfies a least square fit and where
[/ = >, al$.. Since the equations are ex-

pressed in terms of ¢;, the a) coefficients of ¢}
have to be expressed in terms a; of ¢;. This
is straightforward using (2.49). The differ-
ent boundary conditions can also be imple-
mented for elements sharing only one ver-
tex with the wall. In a square domain, the
convergence of the accuracy with resolution
was seemingly good with the condition im-
plemented for only elements sharing one side
with the wall. Therefore, we only impose the
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boundary conditions on elements sharing a
face with the boundary although some tests
were done to investigate this point. Further-
more, in opposition to the continuous spec-
tral element formulations, we stress that the
same polynomial order is used for all the vari-
ables. From our experience, we never en-
counter a problem related to the stability,
except for trivial CFL problems.

Figure 2.10: Local non-orthogonal coordi-
nates in a given triangle

Figure 2.11: Example of Legendre polynomi-
als q)z = Lg(fl)Lg(fz)

We apply the discontinuous spectral el-
ement method to the discretization of the
shallow water equations. Using a weak
formulation and the traditional notation
of Galerkin methods, inside each element-
triangle the system of equations reads:

ou Ta

- fva ¢Z>
i

+(gm, 8—i> - j{ gMapingds

—v [(Vu,ngSi) - fvu,,d : nqﬁids] (2.51)

ov T,
(a,@? = (Eya¢i>

ov ov
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0¢;
+(gm, 8—y> - 7{977bd¢myd3

—v [(VU,V(;SZ') - j{VUbd : nqﬁids] (2.52)

on B _
(Ea ¢l> - (llh, V¢Z>

_j{hbd(ubd -n)¢;ds (2.53)

where variables and parameters are given in
Table 2.1. The line-integrals are very im-
portant because they alone transfer informa-
tion in and out of each element. LK chose
to solve a local Riemann problem to com-
pute the boundary value but this technique,
being similar to an upwind method, leads
to a loss of accuracy. We favored the sim-
ple choice of the mean value of both sides of
a face which does not affect accuracy. The
nonlinear terms are rather expensive to com-
pute (30% of the cost at m, = 5). They
require a transformation of the local spec-
tral coefficients to a local set of Gaussian
points used afterwards to transfer back to
the spectral space. The choice of the right
Gaussian points is obviously important. Af-
ter a few trials, we favor the use of irregular
points on the triangle (Lyness and Jespersen,
1975; Dunavant, 1985), which are unfortu-
nately only given for polynomials of degree
up to 20 (the mass matrix can be exactly
computed for n, < 10). For higher degrees,
it is always possible to use a regular set of
Legendre-Gauss or Legendre-Lobatto points
(but at a higher cost since these sets of points
are not optimal on the triangle). For n, = 0,
we note that the discontinuous SE formula-
tion is equivalent to a F'V method.

The time integration is done using a 4th
order Runge-Kutta method. Thus, using
polynomials of degree n, = 5 for instance,
gives a certain equivalence between spatial
and time truncation errors. The spectral ele-
ment model is hereafter referred to as SPOC.

A constant eddy viscosity coefficient is
used to allow for easy comparisons between
models. In a discontinuous spectral element



CHAPTER 2. PRESENTATION OF THE NUMERICAL METHODS

model, the Laplacian operator of the veloc-
ity components cannot be computed directly
(see LK for details). The computation has to
be done in two steps. First, the gradient ten-
sor of the velocity is computed using a weak
formulation and an integration by parts. The
mass maftrix is then inverted:

<%7¢Z) = —(u, %> + y{ubdgbinmds .

ox

(2.54)
Second, the gradient of gradient terms is
computed in the momentum equations again
using an integration by parts. This ensures
that the gradient terms are (weakly) con-
tinuous between elements. Since the com-
putation of the gradient tensor is necessary
for the computation of the nonlinear terms,
this treatment of the diffusion terms does not
hamper the computational cost. In 2D, it
involves the computation of 4 extra-terms,
and in 3D, 9 terms. For the free-slip bound-
ary condition (the one used hereafter), the
normal velocity component and the normal
derivative of the tangential velocity must
vanish at the wall ({2 = —1). This requires
a rotation of the velocity components and of
the gradient tensor and a projection onto the
special basis function defined in (2.49).

2.4.3 Adaptive Mesh Refinement

Given the two to three orders of magnitude
difference between the scale of eddies and
the basin scale, today’s global ocean eddy
resolving models require a variable in time
and space resolution. To fulfill this con-
straint, not only do we need a variable in
space resolution model (which the FE and
SE models already offer), but we also need
some flexibility of the mesh in time, since ed-
dies and fronts are unsteady phenomena. By
adaptive mesh refinement, we mean that the
mesh is refined automatically as the simula-
tion goes on in regions where estimated er-
rors are the largest. The difficulty is in com-
puting an error estimator that determines
where to put more resolution. For FE meth-
ods using linear basis functions, it is usu-
ally recommended to estimate the local sec-
ond order derivatives of the fields and put
more resolution where these derivatives are
the largest (Zienkiewicz and Taylor, 1991,
p.b71). Because the solution is piecewise lin-
ear, it is difficult to estimate its second order
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derivatives. This usually requires the recon-
struction of the solution by a higher order
method (Zhu and Zienkiewicz, 1990). For
continuous SE methods, adaptive strategies
require to estimate the slope of the spectral
coefficients with wave number. If there is
too much energy in the high wave numbers,
the elements have to be refined (Mavriplis,
1994). This is a less complex procedure than
that for FE methods. Adaptive strategies
are difficult to implement in FD models be-
cause the Cartesian grids lack the flexibil-
ity of irregular meshes of FE and SE meth-
ods. Some adaptive mesh strategies have
been proposed, though, in the form of nested
grids. The coarse grid follows the overall cir-
culation while the finer grid focuses on a par-
ticular region of interest. Both interacting in
a one-way or two-way fashion depending on
the models (Blayo and Debreu, 1999; Wadley
and Bigg, 1999).

From the point of view of defining an er-
ror estimator, the discontinuous SE method
is slightly more effective. Since the proposed
SE formulation allows the solution to be
discontinuous between elements, a straight-
forward estimator is to compute the maxi-
mum jump between elements for each field.
Though very simple, this estimator has not
yet been found in the literature. This is
therefore our own development. Once the
error estimator has been defined, the refine-
ment or derefinement of the mesh is fairly
conventional and can be found in many text-
books, for instance in Zienkiewicz and Tay-
lor (1991) at p.574. We finally end up with
four parameters that control the refinement
in time (see Table 2.2). The refinement is hi-
erarchical. When a triangle is to be refined,
it is cut into four children-triangles and if the
neighboring triangles are not to be refined,
they are cut into two children-triangles in or-
der to have a conformal connectivity. But
if one of the two children-triangles is to be
later refined, their parent-triangle will be cut
into four, as the cutting into two children-
triangles is only needed to complete the con-
nectivity (Fig.2.12). All the refinements of
the mesh will be kept in memory, easing the
backward process of derefinement. The CFL
condition is updated every time the mesh is
modified. The model requires a certain ad-
justment time in order to smooth the jump
between elements after each refinement of
the mesh. Therefore there is a minimum
value for mcpecr (Table 2.2) depending on
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Relative Function

value

Para-
meters

A1 0.01-0.03 | value of the jump
above which the ele-

ment is refined

A2 0.001 value of the jump be-
low which the ele-
ment is to be dere-
fined

value of the jump
above which the sim-
ulation is restarted
using older fields
number of time step
between two checks
of the jumps be-
tween the elements

A3 0.05-0.15

1000

Ncheck

Table 2.2: Refinements parameters used in
the simulations unless otherwise specified.

the time-step and the physical parameters.
Hence, for a time stepping simulation, the
model stops regularly to check the level of
errors, refines the resolution accordingly, in-
terpolates the fields onto the new mesh and
then restarts with the new mesh and fields.
In contrast to steady flows for which the so-
lution is unique (if the initial guess is close
enough), the transient simulations present
the disadvantage that the solution accuracy
might degrade because the errors are still
present in the new fields, although the res-
olution has been improved. This justifies
the use of A3, the relative jump value above
which the errors have reached an unaccept-
able level. If so, the model should not restart
from the present time-step but from a previ-
ously saved time-step at which the level of
errors was acceptable. The question of accu-
racy of adaptive time-stepping solutions also
arises from the issue of interpolating the vari-
able fields, since the interpolation does not
conserve mass or energy.
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Figure 2.12: Remeshing strategies. The tri-
angle to be refined is in grey.

2.4.4 Curved Spectral
Method

Element

As we stressed in Section 2.2, the representa-
tion of the irregular geometry is the weakest
point of FD methods. They represent the
coastline as step-like walls. This would be
equivalent to say that the boundary is piece-
wise constant, i.e, discontinuous. In con-
trast, FE methods usually represent a com-
plex boundary by piecewise linear segments.
Thus, the model boundary is C° continuous.
In order to represent accurately a complex
boundary in SE formulations, it is better
to stretch or curve the element boundaries
than to increase the number of elements in
a region of strong curvature (and keep the
model boundary piecewise linear) as done in
FE methods. Doing otherwise results in an
increase in the number of elements and an
increase in the resolution to the point that
the cost of using higher order polynomials
becomes prohibitive. It makes more sense
to take advantage of the high order to get
a boundary as smooth as possible (and try
to get rid of discontinuities between piece-
wise segments along the boundary). This al-
lows for faster convergence rates when the
numerical solution is compared to analyti-
cal solutions found in continuously varying
curvature domains. Furthermore, high or-
der methods tend to behave badly in the
presence of singularities along the boundaries
(Gibbs oscillations). This is particularly true
for this discontinuous SE method. In fact, we
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g &

Figure 2.13: Transformation of one triangle
intro a curved triangle

observe in one test-experiment these oscilla-
tions localized around the tip of one rectan-
gular continent. Hence, a clear limitation of
this SE formulation lies in the presence of
singularities along the coastline. It is not so
much a surprise that the high order meth-
ods tends to behave badly in the presence of
singularities compared with low order meth-
ods. Singularities excite the highest modes
of the high order methods and so, lead to
strong oscillations. In particular, the adap-
tive method developed in the previous chap-
ter fails to convergence in the presence of sin-
gularities (not shown). Therefore, the solu-
tion may come from smoothing out the geom-
etry by using curved elements. In practice,
the additional cost associated with the imple-
mentation of curved elements in triangular
spectral elements limits the order of conti-
nuity of the model boundary. This section is
devoted to the development of a curved spec-
tral element model. Although curved spec-
tral elements may appear natural, few details
are available in the literature about their im-
plementation. We therefore develop our own
methodology.

For a triangle with local coordinates vary-
ingin 0 < £ <1, 0 < pu1—¢, there is
a local analytical transformation that trans-
forms one of the faces into a parabolic seg-
ment (Fig. 2.13):

!
€ =€+ at 2.55)
W= p+ b .

The segment is parabolic in the sense that
it can be represented by an equation which
is quadratic in term of & and u'. Hence,
we can represent curved coastlines as piece-
wise parabolic segments. Since the coordi-
nate system we choose for integration over
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Figure 2.14: Transformation of one triangle
intro a curved triangle with the coordinate
system used in the computation of the inte-
grals

the triangle (Fig. 2.14) is (&1, &2), the exact
transformation is

b
=6 — 5(5% +& +6& + &)

13 :f2+aT+b(f%+f1 + &6+ &) .

(2.56)
The Jacobian matrix J of this transforma-
tion is needed for computing the integrals

_(Ju Ji2
T= <J21 J22>
Ju=1 —b(&+1/2+1/2¢&)
) Jiz= —=b/2(&1+1)
with
Jon= (b+a) (& +1/2+1/2&)
J22 =1 —l—(b+a)/2 (fl + 1) .
(2.57)

For instance the computation of the mass
matrix M becomes

M;; :/T¢i(€1a€2) bj(&1,&2) dEydeés

— /T Gi(61,62) 961,62 det(T) dérdé
(2.58)

The obvious inconvenience is that the Gaus-
sian rules we use to compute the integrals
and, more specifically, the nonlinear terms,
need to be augmented by two degrees, since
det(J) is a polynomial expression of degree
2. Therefore, a set of polynomials of degree
5 require a Gaussian rule of degree 12 instead
of 10. Keeping the old set of Gaussian rule
is not impossible but leads to large errors
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since the integrals are not exactly evaluated.
From that point of view, the spectral quad-
rangle is more efficient. Since it exists a set
of cardinal-orthogonal polynomials on a rect-
angle, it is more effective to keep the old set
of Gauss-Lobatto points even if the integrals
are no more exact in a curved quadrangle.
In fact, the errors in the computation of the
integrals are, in this case, roughly of the or-
der of the maximum polynomial order (Ron-
quist, 1980). However, for triangular spec-
tral elements, the inconvenience of increasing
the number of Gaussian points applies only
for the curved elements along the boundary.
Therefore, the problem of additional cost is
not so serious since it concerns a small set of
elements.

2.5 Summary

In summary, all numerical methods have
their advantages and drawbacks. Traditional
FD methods are of low order (usually, sec-
ond order) and very easy to implement but
may lack accuracy due to the presence of
steps in irregular domains. FE methods dis-
cretize easily complex domains but are gen-
erally of low order and require the solution of
a matrix problem. Moreover, they may lose
one order in truncation errors if the mesh is
too irregular (which often occurs for triangu-
lar meshes). By contrast, traditional imple-
mentations of FD methods in ocean models
make use of regular grids. SE methods of-
fer high accuracy in complex domains but at
an unknown cost and seem to lose accuracy
in presence of steps. Therefore, they require
the smoothly curved boundaries that we in-
troduce in Section 2.4.4. We also introduce
a simple adaptive mesh strategy for the SE
method. The mesh is refined or derefined
when the local error is too large. The lo-
cal error is estimated based on the jump in
the solution between two adjacent elements.
Hence, the SE model should be able to au-
tomatically increase the resolution in regions
where the solution is under-resolved. This
might be essential in order to resolve and fol-
low local eddies or moving fronts. The next
step is to investigate the effective truncation
order and the cost function for all the models
presented in this chapter.



Chapter 3

Testing the Different Numerical

Methods

In this chapter we investigate the accuracy
of the different models presented in Chap-
ter 2, in straight wall and circular geome-
tries. The test cases are idealized in the sense
that they are based on the linearized shal-
low water equations and therefore, an ana-
lytical solution exists. We are interested in
the effective truncation order and the com-
putational cost for all schemes. These con-
siderations are important for the choice of
a numerical method to use in ocean mod-
elling. Although this approach is very ba-
sic, we stress the fact that these compara-
tive studies are rarely done and that little
is known about the relative effectiveness and
cost of each scheme. For the finite differ-
ence (FD) models in a circular geometry, we
are particularly interested in the influence of
the steps for a wind-driven circulation that
occurs along the walls when the discretiza-
tion axes do not coincide with the orientation
of the walls. These steps may have a detri-
mental effect on the overall effective trunca-
tion order. In contrast, finite element (FE)
and spectral element (SE) models have much
less difficulty in discretizing complex bound-
aries. However, the use of irregular grids
may decrease the effective truncation order
of these models. We perform a convergence-
with-resolution study for a non-linear prob-
lem in a square domain. In this case, the
reference solution is given by the high-order
spectral element (SE) method at a high res-
olution. For this problem, we also present
results using the simple adaptive strategy in-
troduced in the previous chapter for the dis-
continuous SE method. When a dynamical
boundary condition has to be found, we tend
to focus on slip boundary conditions. Other-
wise, the fluid is assumed to be inviscid.

For circular or smooth geometries it is pos-
sible to use curvilinear grids for FD meth-
ods and, hence, avoid the occurrence of steps
along the boundaries. Curvilinear grids can
better fit irregular coastlines and can provide
some variable resolution capabilities, such
as implemented in the POM (Blumberg and
Herring, 1987) and SPEM (Song and Haid-
vogel, 1994) models. However, some smooth-
ing of the geometry is needed, since curvilin-
ear grids cannot accommodate all bays and
capes. This method is therefore of limited
use, since it accommodates only the large
scale features of the coastline. For a realis-
tic representation of lateral boundaries, step-
like features would still appear, although the
total number of steps is reduced when com-
pared to Cartesian grids. We do not consider
the use of curvilinear grids in our discussion
of FD methods due to its lack of generality,
although this method might be adequate for
smoothly varying boundaries.

3.1 Gravity Waves in a

Square Domain

In this section, we present results for the lin-
earized SW gravity wave propagation prob-
lem in a square domain. An elevation per-
turbation is imposed at the beginning of the
simulation, in the form of a sine wave with
phase lines parallel to the y-axis:
n(z,y,t =0) = hg cos(2m x/L,) . (3.1)

The initial velocity is zero. The wave propa-
gates along the z-axis. Since there is no dis-
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Figure 3.1: The wave test experiment

persion in the y-direction, the problem sim-
plifies to a one-dimensional problem and a
simple analytical solution can be found. An
equation for 1 only can be found by substi-
tuting the u-equation in the n-equation

Oun — gH Open =0 . (3.2)
With no normal flow boundary conditions,
the solution is

"”) cos(wt) (3.3)

n(z,y,t) = ho cos <2W

Ly
where w = \/gH 2n/L,. Therefore, the wave
is a free mode of oscillation for the square
basin. It bounces back and forth between the
walls at the period of 27/w. The velocities
are given by

{u(w,y,t) = upsin (QE—:”) sin(wt)

v(z,y,t) =0 (34)

where ug = gho/+/gH.

For all models, the numerical simulation
is performed up to a tenth of the character-
istic period of the wave. This duration is
long enough that the estimation of the effec-
tive truncation order for the different models
is possible and yet not too long so that the
contamination by other factors such as time
discretization errors is limited. The Courant
number is kept constant and is the same for
all models. By increasing the resolution of
the models and comparing the numerical so-
lution to the analytical solution, we can com-
pute the errors and the effective truncation
order of each scheme. For the FD models, the
grid is oriented along the walls of the square
which coincide with the direction of the wave
propagation, also the z-axis. Hence, there
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are no dispersion errors in the y-direction.
However, the FE and SE methods use ir-
regular meshes made of triangles that are
randomly oriented. Therefore, these meth-
ods show a dispersion error along the y-axis
which can be quantified as a function of res-
olution. The errors are computed and nor-
malized as

S S mod — pl dady
E(:“‘mod) - ffdacdy

(3.5)
‘ [ [ dzdy
\/ [ [ w? dxdy

where 1 and 04 represent respectively the
analytical and model solution of any vari-
able. The term [ [u? dzdy is computed
analytically and is therefore the same for
all models. For FD models, [ [|tmod —
p| dzdy | [ [dzdy is approximated by
>_ij [Bmod — p|/(ngny). For the FE and SE

models, this integral is computed by inter-
polating |tmoq — | onto a regular grid, sum-
ming the values and dividing by the number
of sampling points. We increase the number
of sampling points until a convergence crite-
rion is satisfied. The normalized error for u
is obtained from (3.5) by direct replacement
of u by u. For v, this is not possible as its an-
alytical value is zero. We have thus used the
analytical value of u for [ [ p? dzdy. The
choice of norms in (3.5) in determining the
normalized error is somewhat arbitrary and
other norms can be used. However the re-
sults would not be substantially different.

We first compare the accuracy of the lin-
earized version of the 4th order A-grid model
to that of the second order C-grid formula-
tion (Figure 3.2). On this log-log plot, the
slope of the curve is directly related to the or-
der of the convergence. The C-grid scheme is
very close to second order and the original A-
grid model (as proposed by D93 and referred
as O-FDM4) has a convergence order of close
to 4. However, the errors can be reduced by
a factor of six if the 4th order accuracy is
extended up to the boundary (R-FDM4 ver-
sion). The gradient and interpolation oper-
ators then need to be off-centered for points
located less than two points away from the
walls. In terms of cost, the A-grid model is
very advantageous (see Fig 3.3 where only
results from R-FDM4 is plotted). The ex-
tra points in the computation of the gradi-
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ent operators needed for 4th order accuracy
slow the model only slightly. Therefore the
4th order A-grid is cost-effective compared
to the C-grid for this problem.
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Figure 3.2: Convergence with resolution of
the normalized error in the u-component for
second order C-grid formulation (FDM), O-
FDM 4 and R-FDM 4 models. The R-FDM4
is an A-grid formulation with off-centered op-
erators to incorporate the 4th order accuracy
up to the boundary
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Figure 3.3: CPU cost with the normalized
error in u-component for the second order

C-grid (FDM) and R-FDM4 models.

For FE models, the use of irregular grids
cause errors to appear in the v-component,
perpendicular to the propagation direction.
These errors can also be viewed as a dis-
persion error. One way to minimize this
error would be to design meshes for which
the nodes or vertices are aligned with the
propagation axis (i.e. characteristic meth-
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ods). Such a mesh would therefore be appli-
cation dependent. We focus instead on the
use of irregular meshes in which the trian-
gles are randomly oriented since, in general
ocean modelling, there are no preferential
directions of propagation. We examine the
four FE models introduced in Section 2.3:
the Lynch and Werner (1987; 1991) model,
the Hua and Thomasset (1984) model, the
Peraire et al. (1986) model and the Le Roux
et al. (2000) model. The respective abbrevi-
ations are: LW, HT, PZM and LLS. In our
comparison study, we multiply by two the ac-
tual resolution of the mesh for the LLS model
to take into account the fact that this model
implicitly doubles the resolution by dividing
each triangle into four sub-triangles. Fig-
ure 3.4 shows the convergence with resolu-
tion of the errors for the v- and u-components
for a linearized version of all FE models. In
such a case, the LLS model is plainly Eule-
rian instead of semi-Lagrangian. The errors
are generally larger for the FE models com-
pared to the C-grid FD model, except for the
LLS model where the errors are comparable.
This is notably due to the use of unstruc-
tured grids in FE models.

Table 3.1 gives the value of the conver-
gence order for both components of the ve-
locities for all models. The order is usually
lower for the v-component (closer to first or-
der) than that of the u-component (closer to
second order) for all FE models. This is how-
ever an artefact due to studying the two com-
ponents of the velocity separately. The error
in v is usually smaller than the error in wu.
This allows for some noise contamination to
lower the convergence order for v compared
to that for u. The convergence order for the
velocity vector tends to be in between but
closer to the convergence order for u since
the errors are largest for this component.

The equal-order FE models (LW and
PZM) present the best convergence order for
U Eabout 2) and also the poorest order for
v (about 1). The LLS model presents the
largest order for v. The order for the HT
model is closer to first than second order for
both components of velocity. Theoretically,
the best achievable convergence order for the
FE models under consideration is second or-
der. The fact that the convergence order
for most models is less than but close to 2
for w is due to the use of irregular meshes.
The change, though, is not as dramatic as
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predicted in Section 2.3.2 where we predict
first order convergence in presence of irregu-
lar meshes for second order accurate FE for-
mulations.

Since the LLS model is the best FE model
in terms of the magnitude of the errors —
to the point that the magnitude compares
favorably to that of the C-grid errors— it is
worth considering some of the reasons behind
this result. First, the method uses macro
elements sub-divided into four elements and
this may “regularize” the mesh since the four
sub-triangles are identical in shape and area.
Second, it is also possible that the fact that
the coupled shallow water equations are re-
duced to coupled Helmholtz equations for
the velocity improves the solution for the
velocity. The fact that the order for this
model is somewhat smaller compared to that
of the LW and the PZM models for the u-
component might be a sign that the trun-
cation order for the pressure slightly affects
the truncation order for the velocity. This
will be more evident in the next test-case.
For the HT model, the smaller convergence
order is probably related to the use of discon-
tinuous basis functions for the velocities, in
contrast to continuous basis functions used
in the other FE models. In conclusion, for
this linear problem, all FE models perform
relatively well —except for the HT model.

We now compare the results of one FD
model (C-grid) and one FE model (LW) to
the discontinuous SE model (Fig 3.5 and
3.6). To make results comparable, the SE
resolution (the inverse of the mean length of
triangle sides) is multiplied by the maximum
polynomial order. The LW-FE errors are
generally larger than those of the FD and SE
models. The SE model has a convergence or-
der that varies between n. and n.—1 depend-
ing on the velocity components. If the basis
functions were continuous, the best achiev-
able convergence order would be n.+ 1. The
loss of more than one order is probably re-
lated to the use of unstructured meshes and
the fact that the basis functions are discon-
tinuous between elements. At n. = 3, the
accuracy of the SE model is slightly better
than the FD model. At the same resolution,
the higher-order method is always more ac-
curate (n, = 5 and 7). Finally we noted that
as for the FE models, the SE model shows a,
difference (Table 3.1) in the convergence or-
der for v and w, with the order for v being
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Figure 3.4: The four FE models (LW, HT,
PZM, LLS) are tested against the analytical
solution with increasing resolution. On top is
the normalized error for the v-component; at
the bottom is the normalized error for the u-
component. The error for the u-component
of the C-grid FD model is plotted for com-
parison.
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smaller than that for w. This is related to
the use of irregular grids and noise contami-
nation problems.

Figure 3.7 shows the variation of the CPU
cost with respect to the accuracy for the
C-grid FD model and one A-grid FD (R-
FDM4) model, the LW and LLS FE mod-
els and the discontinuous SE model. The
curve is usually a straight line. The less the
slope of the curve, the more accurate for the
same cost one model is. The model whose
curves lies on the right (left) of the others is
the most (less) economic model. There is of
course the possibility that some models per-
form better than the others depending on the
range of the required accuracy due to the ex-
istence of cross-over points between the dif-
ferent curves. The LW model is always less
accurate for the same cost with the slope be-
ing equivalent to that of the finite difference
model. The LLS model enhanced accuracy
compared to the other FE models (Fig. 3.4)
is traded off by a large increase of the CPU
cost, to the point that the LLS model is only
marginally better than the LW model. The
SE model with n, = 5 behaves similarly to
the 4th order A-grid model. However, the A-
grid model is slightly more accurate for the
same cost. Nonetheless, the SE model with
ne = 7 give better results than this 4th or-
der FD model. From this linear test case,
we conclude that it is more effective to use
higher order methods (the SE and R-FDM4
models).

3.2 The Wind-driven Circu-
lation in a Circular Do-
main

A linear analytical solution can be found for
the wind-driven problem in a circular domain
with Coriolis forces and damped by a lin-
ear bottom friction. No viscosity is included.
The boundary condition is simply the no-
normal flow condition at the model bound-
ary. The steady state linearized shallow wa-
ter equations in cylindrical coordinates for

32

0.1

0.01
0.001 |
0.0001 f g %
le-05
1le-06 | [ |
1e-07 | :
le-08

Normalized error in v

LW X N
SPOC 3 ¥ |
1e-09 | SPOC 5 {1 y

SPOC7 - 5

1le-10

1 10 100 1000
Resolution (number of points in the x-direction)

Figure 3.5: Convergence of the normalized
error in v with respect to the resolution for
the LW-FE and SE models. SPOC3,5,7 cor-
responds to the SE model with nc = 3,5,7
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Figure 3.6: Convergence of the normalized
error in u with respect to the resolution
for the C-grid FD, LW-FE and SE mod-
els. SPOC3,5,7 corresponds to the SE model
with nc = 3,5,7
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Figure 3.7: Variation in the wu-component
normalized error as a function of CPU cost.
The former is measured by the area inte-
grated absolute value difference between the
numerical and analytical model results for
the C-grid FD, R-FDM4, LW, LLS and SE
models. SPOC3,5,7 corresponds to the SE
model with nc =3,5,7

convergence | convergence
order for order for
Model the error in | the error in
v U

C-grid FD - 2.03
O-FDM 4 — 3.85
R-FDM 4 - 4.09
LW 0.94 1.91
HT 1.08 1.30
LLS 1.43 1.69
PZM 1.01 1.97
SPOC 3 2.57 2.73
SPOC 5 4.00 4.68
SPOC 7 5.96 6.72

Table 3.1: Convergence order for the differ-
ent models for the linear wave experiment in
a square domain. For all models, the order is
fairly close to their theoretical value. Models
using unstructured grids lost almost an order
for the error in v compared to the error in w.

this problem are

n

95, = ~Hor +74/H cos+ fug  (3.6)
gom _ . ing
99 = hve 1x/H sinf — fu,  (3.7)
d(rv,)  O(vp) B
or 00 =0 (3:8)

where the wind forcing is given in cylindrical
coordinates by the relationship

Wy  Wrsinf
R R ’

(3.9)

Tx

where R is the radius of the circular domain.
From (3.6-3.8), we derive an equation for n

0%
Or2

dn

or

T W/
RgHK

Lo%n _

R (3.10)

with the boundary condition of no-normal
flow

on fon _ 1zl fsi _
K, rao_gH(“COSO fsin@) at r =R .

(3.11)
This leads to the solution without Coriolis

force,

W2

~ 49HR

and with Coriolis force

Wi [R* % [k .
= — + — [ —=sin20 -1 .
"~ RgHr [ 8 (fsm )]

(3.13)
With or without the Coriolis terms, the ve-
locity components take the simple form of

sin 260

n (3.12)

v, =10
_ Wr
2Rk

(3.14)

Vg =

which translate in the Cartesian coordinate
system to

U =5y
2Rk
o W (3.15)
2Rk

We perform a one year spin-up for all models
with W = 107*m?s2, f = 10~*s~! or zero
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and x = 1073s~!. This is enough to con-
verge to a steady state accurate at six digits
for the kinetic energy. The normalized error
is computed in the same manner as in (3.5)
but using the elevation field. We focus on the
elevation this time because, for the HT and
LLS FE models, the pressure basis functions
are different from the basis functions used to
represent the velocity. Furthermore, the pre-
vious test case does not allow for an inter-
esting comparison of the elevation fields (the
elevation is imposed at initial time), whereas
this one does.

We first analyze the results from the C-
grid model. Because of the presence of steps
(Fig. 3.8), it is not clear which opposing ef-
fect is dominant when the resolution is in-
creased: an increased accuracy in the inte-
rior and a more accurate representation of
the boundary, or a lower accuracy because of
the increased number of steps. For brevity,
we only show the results for one case, at
f = 0, since convergence properties are not
significantly different than those at f # 0.
Figure 3.9 shows the convergence of the nor-
malized error in 7 with increasing resolution.
It appears that the convergence order of the
C-grid FD model is closer to one (1.1 when
f =0and 1.3 when f = 10~*s~!) than two,
the maximum for this second order FD for-
mulation. Therefore, the steps have a direct
influence on the order of the FD model. The
order is reduced compared to the previous
test-case with straight walls. The perturba-
tion due to the singular steps on the flow
does degrade the accuracy, although not to
the point that the errors increases with in-
creasing resolution.

We now compare the solution from the C-
grid FD model with the O-FDM4 and R-
FDM4 models. Figure 3.9 shows that the
order of the A-grid model is actually less
than two in presence of step-like walls. Fur-
thermore, there is no longer a difference, in
term of truncation order, between the sec-
ond order C-grid and the 4th order A-grid
models —unlike the case with straight walls.
Therefore, the presence of steps along irreg-
ular boundaries has a detrimental effect on
the accuracy of high order FD formulations
if the flow is allowed to slip along the walls.

We now compare the FE models to the C-
grid model. In this circular geometry, all FE
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Figure 3.8: Grids for the circular domain for
the FD models. 51 x 51, 101 x 101 and 201 x
201 points for domain on the left, center and
right respectively.
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Figure 3.9: Convergence with resolution of
the normalized elevation error for the sec-
ond order C-grid FD, O-FDM4 and R-FDM4

models in a circular domain.

models have the advantage that the repre-
sentation of the boundary is improving as
the resolution is increased. Therefore, it
should be possible to observe convergence or-
der close or even exceeding two. Figure 3.10
and Table 3.2 show that all FE models have
a convergence rate close to second order ex-
cept for the LLS model. The LLS model also
shows the largest errors. The reasons for the
poor performance of this model are as fol-
lows. Firstly, the geometry is resolved by the
macro-elements. Thus the representation of
the boundary suffers from being half sam-
pled compared to the permitted resolution.
Second, we focus here on the elevation errors
which are always larger for the LLS model
because the piecewise constant basis func-
tions are not as accurate as those of the other
models. For the HT model, the improvement
in the error compared to the previous test-
case is probably due to the basis function for
1 being continuous. In fact, all FE models
used this basis function for the elevation ex-
cept for the LLS model. Hence in terms of
accuracy, all FE models appear to perform
better than FD models in non-rectangular
geometries for linear problems, except for the
LLS model. In terms of cost, the equal-order
FE models are the most effective. However,
we still need to demonstrate the efficiency
of FE models for nonlinear problems before
concluding on the general effectiveness of FE
models in irregular domains.
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Figure 3.10: Normalized elevation error in a
circular domain for an inviscid linear solu-
tion. The four FE models (LW, HT, PZM,
LLS) are tested against the analytical solu-
tion with increasing resolution. The error for
the FD model (FDM) is given for compari-
son.

For the SE model, the results are given
in Fig. 3.11 where we compare the solutions
from the C-grid FD, LW FE and SE mod-
els. The results for the SE model shows a
surprising feature. The 3rd order SE model
has a better accuracy than the FE model but
the errors for the 5th and 7th order SE are
larger than expected. The convergence or-
der is also affected (see Table 3.2). In this
particular example, the main source of er-
rors comes from the discretization of the cir-
cular geometry by piecewise parabolas. A
quadratic spline description of the circular
boundary allows for (at least) a 3rd conver-
gence order. This explains why the conver-
gence order for the 3rd order SE model ap-
pears optimal but less optimal for the 5th
and 7th order SE model. The order of the so-
lution improves in the interior but the error
along the boundary being larger leads and
causes a overall loss in the convergence order.
One solution would be to implement more
complex curved elements along the bound-
ary (using cubic or more splines), but as ex-
plained in Section 2.4.4, increasing the order
of the piecewise curves along the curved ele-
ments is not always practical.
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Figure 3.11: Normalized elevation error for
the C-grid FD, LW-FE and SE models for a
circular domain. The curve for the SE model
at n. = 7 (SPOC 7) is on the right of that
for n. = 5 (SPOC 5) presenting some kind
of “saturation” effect.

Model convergence olrder

for the error in 7
C-grid FD 1.15
O-FDM 4 1.51
R-FDM 4 1.24
LW 2.40
HT 1.91
LLS 0.98
PZM 1.94
SPOC 3 3.33
SPOC 5 4.09
SPOC 7 4.64

Table 3.2: Convergence order in elevation,
for the different models for the linear wind-
driven experiment in a circular domain with-
out Coriolis terms.
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3.3 Conservative Properties

of the Different Numer-
ical Formulations for a
Nonlinear Problem

We compare the FE models and the discon-
tinuous SE model to the solution given by
the C-grid FD model in a test-case for which
the total energy (kinetic and potential) is
conserved during the time of the simulation.
A geostrophically balanced eddy is initial-
ized at the beginning of the simulation in
a square domain on a beta plane approxi-
mation for all models. The shallow water
equations are fully nonlinear. The fluid is
inviscid, that is no eddy viscosity is applied
and therefore no dynamical boundary con-
dition is required. We introduce two ver-
sions of the LW model. The first one is
the original model in which the mass ma-
trix is lumped (see Section 2.3 for expla-
nation) and is referred as lumped LW. The
second version uses the delumped mass ma-
trix (the full —sparse but not diagonal—
mass matrix) and is referred as delumped
LW. The SE model is run on a 132 trian-
gle mesh at n. = 5. The geostrophic eddy
moves slowly westward due to the sphericity
of the earth and slightly southward due to
the nonlinear terms (fo = 1.0285 x 104 s~
and 8 = 1.607 x 107" m~'s~!). The ini-
tial height is 580 m and corresponds to a ve-
locity maximum of 1 m/s currents for a re-

duced gravity of ¢’ = 0.01 m/s%. There is no
forcing and no dissipation, therefore the to-
tal energy should be conserved. Figure 3.12
shows the results. The FD and SE models
do indeed conserve energy, but all the FE
models tend to lose energy. The FE mod-
els that dissipate energy moderately are the
delumped LW model, closely followed by the
LLS model. The HT model becomes unsta-
ble after a few days of integration and re-
sults for this model are therefore not shown.
This illustrates the severe stability problem
suffered by this model. The results for the
lumped and delumped LW model are shown
for 7o = 2 x 1073 57! (see Section 2.3 for de-
tails on 79). The lumped LW model appear
to be more dissipative than the delumped
version. We tested other values of 7y for the
lumped and delumped LW models (the re-
sults are not shown). For smaller 75 both



CHAPTER 3. TESTING THE DIFFERENT NUMERICAL METHODS

Total Energy (kinetic + pot.)

7e+12 : :
C-grid FD
LTl delumped LW
6.5e+12 1
N ) ;;\\;‘\;
2 LS
E T -
S 6e+l2 | lumped LW PZM
>
Q
c .
10}
5.5e+12 - e
5e+12 : : :
0 5 10 15 20
Days

Figure 3.12: Total energy after 18 days of
simulation for the C-grid FD and the lumped
LW, delumped LW, PZM and LLS FE mod-
els and the SE model for the geostrophically
balanced eddy with no dissipation and no
forcing. All the FE models tend to be over-
dissipative.

versions of the model tend to be even more
dissipative and the lumped version is unsta-
ble when 79 is too large (> 10~ s71) or too
small (< 5 x 107° s !). The influence of 7y
on the dynamics will be further investigated
in the next test case.

3.4 The Munk Problem in a
Square Domain

In this section, we compare the models us-
ing a second nonlinear problem, namely the
single gyre Munk problem. With a constant
wind, the sphericity and rotation of the earth
yield a strong return flow along the western
wall. The wind forcing is given by the stress
7, = —10"*sin(r y/L,) m?s~ 2 and 7, = 0.
The remaining model parameters are iden-
tical to those of the previous section. The
energy put in the ocean by the winds is dis-
sipated mainly in a viscous layer along the
boundary because of the strong return flow
there. The eddy-viscosity, v = 700 m?s~!, is
constant over the whole domain. We use the
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free-slip boundary condition. A strong re-
circulation forms in the northwestern part of
the domain, evidence of the nonlinear effects
in the solution. Under free-slip, the solution
is very sensitive to the shape of the bound-
aries and to the value of . We hope to shed
some light on the sensitivity of the FD mod-
els to steps occurring along the boundaries,
as FD models generally do not work well in
irregular geometries. Furthermore, because
of the sensitivity of the solution to v, we ex-
pect to better observe the dissipative nature
of FE models.

For the C-grid FD model, Adcroft and
Marshall (1998), hereafter AM, performed
the same test-case for somewhat different
model parameters. An important finding
in this study is that the C-grid model is
very sensitive to the presence of steps, to
the point that simulations run in a rotated
square basin with respect to the grid yield
very different results compared to the non-
rotated simulation. This sensitivity could
greatly be reduced if the conventional five-
point Laplacian in the viscous tensor is re-
placed by a discretized vorticity-divergence
form. The two tensor formulations are equiv-
alent in a non-rotated basin, but are differ-
ent in presence of steps. Around steps, the
vorticity-divergence formulation tends to ac-
celerate the fluid parcels compared to the
conventional stress formulation. Their find-
ings suggest that free-slip circulations can be
made independent of the way the coastline is
discretized. We shall return to this issue in
the next chapter.

We consider the solution from the 4th or-
der A-grid model. When running the non-
linear version of this model with free-slip
boundary conditions, we noted that hav-
ing 4th order accuracy extended up to the
boundaries has some positive influence on
the stability of the overall model. Figure 3.13
shows that large spurious numerical modes
are present for O-FDM4, whereas there are
no visible spurious modes for R-FDM4. We
also consider the same experiment in a ro-
tated basin with respect to the grid, follow-
ing AM. Strong numerical noise again occurs
for O-FDM4 (Fig. 3.14). The model remains
however stable and relatively noise-free when
the 4th order extends up to the walls, al-
though the total kinetic energy is less than
that for the non-rotated basin experiment.
Moreover, the overall circulation looks very
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similar to that observed by AM with the
C-grid and conventional viscous stress ten-
sor in rotated basins. The C-grid solutions
tend to be less noisy, though. These two ob-
servations (numerical noise and lower ener-
getic level) demonstrate that the 4th order
formulation is very sensitive to the presence
of steps when the free-slip boundary condi-
tion is used. We did not test whether the
vorticity-divergence form of the stress tensor
has the same positive influence for R-FDM4,
as it does in the case of the C-grid. Chap-
ter 4 will be specifically dedicated to a thor-
ough study of the issue of FD discretizations
and advective and stress tensor formulations
in rotated basins.

We compare now the FE models to the so-
lution given by the C-grid FD model for a
non-rotated basin. All FE models tend to
show a kinetic energy value well below the
FD model during spin-up (Fig. 3.15). The
circulation also proves to be weaker in mag-
nitude for the FE models when compared to
the FD model circulation (Fig. 3.16), show-
ing the dissipative nature of FE models. We
discuss some of the reason for this behavior.
For the HT model, increasing the resolution
did not improve the solution (not shown).
There is therefore some sort of zero trunca-
tion order error in this model. This may arise
from the discretization error of the nonlin-
ear terms in the momentum equations due
to the discontinuous linear form of the ve-
locity basis functions. The PZM model may
be dissipative because of the use of averaged
values at triangle centroids in the computa-
tion of fluxes. The LLS is dissipative be-
cause of the dissipative nature of the low or-
der Kriging method used in the time semi-
Lagrangian discretization (see Section 2.3 for
more details). We do not expect to see any
improvement with increased resolution for
this model because higher resolution means
smaller time-steps, and therefore, a larger
number of interpolation operations.

For the LW model, the mass equation is
not solved independently for the elevation
but is mixed with a wave equation (Eq. 2.36).
In theory, both equations should be satisfied
independently. However, since both equa-
tions are mixed together, neither is solved
exactly and this may influence the overall
oceanic circulation. The wave equation tends
to transfer 7, equivalent to the mass, through
the whole domain by means of gravity waves.
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Figure 3.15: Kinetic energy during a 6 year
spin-up for the C-grid FD, the lumped LW,
HT, PZM and LLS FE models.

This process may upset the local geostrophic
balance by transferring the mass through the
streamlines. This process is equivalent to
having a dissipation term in the mass equa-
tion. To illustrate this, we vary the value
for 79, the free parameter appearing in the
wave-mass equation for the wind-driven sin-
gle gyre Munk problem. Figure 3.17 shows
that the kinetic energy for a single gyre wind
forcing at the end of the simulation varies sig-
nificantly with the value of 7y (not to be con-
fused with the wind stress; see Section 2.3 for
details). In the limit 79 — oo, which corre-
sponds to satisfying the local mass balance,
the results are very similar to the ones ob-
tained using the FD method. However, as
we noted earlier the model can be unstable
for large values of 7y for certain applications
(Section 3.3). A good compromise is found
by experimenting with different values of 7
and is therefore very application dependent.

For the discontinuous SE model, we con-
sider the Munk problem for two values of
the eddy-viscosity. We retained for compar-
ison the C-grid FD model and the delumped
LW FE model at 79 = 2 x 1072 s~!, which
gives better results than the lumped version.
The SE model is run at n, = 5 on a 56 tri-
angle mesh. We compared results from the
FD, SE and FE models for two values of the
viscosity coefficient. For the high viscosity
case (v = 2000 m?s~!, Fig.3.18) the models
perform similarly, with the FE model show-
ing smaller undershoots. The SE and FD
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Figure 3.13: Elevation field after a six year simulation in a non-rotated basin using O-FDM4
(left panel) and R-FDM4 (right panel). The conventional Laplacian is used.

Figure 3.14: As for Figure 3.13 but for rotated basin.
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{@

o HT || PZM | e o LLS

Figure 3.16: Elevation field after a 6 year spin-up for the C-grid FD, the lumped LW,
delumped LW, HT, PZM and LLS FE models for the single gyre wind forcing problem.
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Figure 3.17: Single gyre wind forcing experi-
ments for the delumped LW FE model com-
pared to the C-grid FD model. As 7y in-
creases the weight is more on the mass equa-
tion than on the wave equation in the LW
model. This influences the value of the ki-
netic energy at the end of the 6 year runs
(black squares). For reference, the FD curve
and, LW curves for v =700 m?s~! at 75 =
21073 s L.

kinetic energy curves are indistinguishable.
For the SE model, Figure 3.19 gives the con-
tours of the elevation at the end of the simu-
lation. No discontinuities are visible, despite
the fact that the solution is discontinuous by
definition. A larger discrepancy is observable
for a lower viscosity case (v = 700 m?s~!,
Fig.3.20) between the FE model and the FD
and SE models, due to the dissipative nature
of the LW model. At the end of the 6 year
simulation, there is a 5% difference between
the kinetic energy for the FD and SE models.
This is an evidence that the SE model lacks
resolution in certain parts of the domain, as
some discontinuities are now visible in the
elevation field (Fig.3.21).

We now examine the accuracy and cost of
the FD and SE models. We have discarded
the solutions obtained by all FE models be-
cause of their over-dissipative behavior. As
an indicator of the accuracy, we use the ki-
netic energy of the basin. Since the solu-
tion of this test problem is nonlinear, a ref-
erence solution is obtained by running the
spectral model for 6 years from rest with
ne. = 7 and a mesh of 132 nodes. The er-
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Figure 3.18: Kinetic energy during spin-

up for the single gyre Munk problem with
v = 2000 m?s~! for the C-grid FD, the
delumped LW FE and SE models. The FD
and SE curves are indistinguishable. For the
SE model (SPOC), n. = 5 and the mesh has
56 triangles.
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Figure 3.19: Elevation field for the SE model
after 6 years from spin-up for the single gyre
Munk problem corresponding to Figure 3.18.
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Figure 3.20: As for Fig. 3.18 but with v =
700 m?s~ 1.

Figure 3.21: As for Fig. 3.19 but with v =
700 m?s~ 1.

ror is then defined as the difference between
the value of the kinetic energy obtained by
one model after a 6 year run and that of
the reference solution. The normalized er-
ror is computed by dividing the error by the
value of the kinetic energy found in the ref-
erence solution. Figures 3.22 and 3.23 show
the convergence of the error with resolution
and CPU cost respectively. The fact that
the finite difference results give close to sec-
ond order accuracy suggests the reference so-
lution is an accurate approximation of the
true solution. These two figures confirm in
general the behavior inferred from the lin-
ear test case. The convergence with resolu-
tion and CPU time is faster with higher order
methods. However, the fact that there is a
cross-over point indicates that below a cer-
tain resolution (Az > 10 km), the FD model
is more accurate for the same cost. At the
cross-over point the error in kinetic energy
is less than 1%. Therefore, the SE model is
more cost-effective than the FD model in a
range of resolution for which the overall error
is already below 1%.

It is also of interest to investigate the cost-
effectiveness of the adaptive refinement strat-
egy developed in Section 2.4.3 for the SE
model. Since this allows for variable reso-
lution in space and time, it may prove more
effective than having a fixed and rather uni-
form mesh in time. We use the refinement
parameters \; and Ncpecr given in Table 2.2
and we test the SE model for the Munk prob-
lem with » = 700 m?s~! for three values for
A1 (0.3, 0.2 and 0.1), which controls the max-
imum discontinuity allowable between two el-
ements. We obtain the circulation patterns
of Figure 3.24 (middle panels) and meshes
(top panels) at the end of the 6 year sim-
ulation. The time evolution of the number
of elements for A\; = 0.1 (the smallest value
used) shows that part of the refinement goes
into following the Kelvin waves at the begin-
ning of the simulation, which require more
resolution along the boundaries (Fig. 3.24,
bottom panels). When the Kelvin adjust-
ment process weakens, a derefinement pro-
cess occurs along the eastern and southern
boundaries leaving higher resolution regions
along the strong western return flow. As Ay
decreases, the refined triangles get smaller
and smaller, and the total number of ele-
ments at the end of the simulation increases
slightly. The isolines of the elevation field
are smoother than those of Figure 3.21, for
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convergence order
Model for the error in
kinetic energy
C-grid FD 2.18
SPOC 5 4.96

Table 3.3: Convergence order for the differ-
ent models for the nonlinear Munk problem
in a square domain.

which a fixed and rather uniform 56-triangle
mesh was used for the SE model. There-
fore, the 56-triangle mesh is too coarse to
model this particular Munk problem with
v = 700 m?s~!'. We also note that the iso-
lines are slightly smoother as A\; decreases.
The convergence rate of the error in kinetic
energy with resolution is better than the SE
model at n, = 5. However, the accuracy-
to-cost convergence is not as good with the
cross-over point of the FD model being at
a higher accuracy level. This may be due
to the fact that the refinement needed to re-
solve the Kelvin waves along the boundaries
at the beginning of the simulation results in
smaller time steps. This failure points also to
a need for local time-stepping, although it is
not quite clear how to implement such a pro-
cedure without loss of accuracy. Of interest
is to note that the error in the kinetic en-
ergy decreases faster than A\;. For instance,
we gain about one order in the the kinetic en-
ergy error by decreasing A; by a factor three.
If the SE model were truly of truncation or-
der n. close to the element edges, the kinetic
energy error should have decreased by the
same factor as A;. This tends to prove that
the errors in the SE model are larger at the
boundary between elements where the dis-
continuities occur. However, these errors do
not seem to adversely affect the overall accu-
racy, possibly because these larger errors are
localized to the edges of the elements.

3.5 Conclusions

We have tested in this chapter different FD,
FE and SE methods. We first rule out the
possibility of using a high order A-grid FD
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Figure 3.24: Solutions after a 6 year spin-up for the Munk problem using the adaptive
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model because, in the presence of irregular
geometries and for an inviscid flow, the ef-
fective truncation order is less than second
order accurate. This was demonstrated in a
circular domain and is due to the presence
of steps occurring along the boundary when
discretizing complex domains on Cartesian
grids. The order of the model may have been
preserved in curvilinear geometry, but we did
not consider curvilinear grids as they are lim-
ited to smooth domains. The same applies to
the second order C-grid model, although the
loss of accuracy is less severe.

We also considered FE methods, some of
which are quite simple (equal-order formula-
tion). They all use linear basis functions for
velocity and therefore we expect these meth-
ods to be no more than second order accu-
rate. In fact, for linear applications in rect-
angular domains, the effective truncation or-
der of FE models is fairly close to two. There
is an increase in the errors due to the use of
unstructured grids. This increase is sufficient
for FD methods to outperform FE methods
in terms of cost. On the other hand, in a cir-
cular domains the order of the FD methods
is closer to one than two. Thus to obtain the
same accuracy, the cost of using FD methods
in irregular domains becomes quickly pro-
hibitive with increasing resolution compared
to FE methods. However, for nonlinear ap-
plications, all equal-order FE methods tend
to be more dissipative, mostly because of
the stabilizing formulations that guarantee
the stability of the model. Hence, applica-
tions of these methods for non-linear oceanic
flows seems problematic. There are other FE
methods which are stable by construction,
complying with the so-called LBB condition,
and are non-dissipative (see Section 2.3 for a
review on FE model stability issues). Unfor-
tunately, the cost associated with these mod-
els is fairly large (they generally use higher
than linear basis functions for the velocity
and leads to fuller matrices). Moreover, as
these models use lower order basis functions
for the elevation (or pressure), the actual ac-
curacy for this variable may be smaller com-
pared to other numerical methods. Since
modern altimetry offers near global cover-
age of the elevation of the oceans, a good
FE ocean modelling strategy may be to not
sacrifice the accuracy for this variable. We
used the LLS model which fulfills the LBB
stability condition as an illustration. We
showed that the velocity errors for a linear
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test case are less for this model than those
of the equal-order FE models and that the
elevation errors are greater. However, the in-
creased accuracy in velocity is exactly traded
off by an increased cost. Unfortunately, the
nonlinear (original version) LLS model uses a
semi-implicit semi-Lagrangian time formula-
tion, which leads to dissipation when applied
to the nonlinear Munk problem. Hence, all
FE models considered are too dissipative for
nonlinear applications. We also investigate
some of the influence of the “lumping” of
the mass matrix in FE models. Some au-
thors have stressed a loss in accuracy due to
lumped mass matrices (Gresho et al., 1978).
We found that the use of mass lumping has
a detrimental influence on the double-gyre
experiments with the LW model. The struc-
ture of the solution tends to be more realistic
when no lumping of the mass matrix is per-
formed.

We next considered a method based on
discontinuous spectral elements. The SE
method introduced in Chapter 2 shows a bet-
ter accuracy than FE and FD models for
ne > 3. The convergence orders are not op-
timal though and vary between n. — 1 and
n. instead of n, + 1. The SE model with
n. > 3 is more cost-effective than FE or FD
methods. This was demonstrated in a rect-
angular geometry most favorable to the FD
model for a linear application. For the non-
linear Munk problem in a square basin, the
SE model is, however, more effective than
the C-grid FD model only at very high res-
olutions. The simple adaptive strategy we
developed in Section 2.4.3 for the SE model,
and tested in the previous section, gives en-
couraging results. It is not nearly as cost-
effective to use compared to a fixed mesh, but
it may be useful to resolve the fine details of
the oceanic circulations whose locations are
not a priori known. Hence this SE model
appear cost-effective to simulate nonlinear
oceanic flows in irregular domains. The only
limitation though is that the model tends to
give poor results in presence of singular geo-
metrical features like steps (see Section 2.4.4)
and therefore requires continuously curved
boundaries.

The C-grid FD model using the vorticity-
divergence stress tensor and the enstrophy
conserving advective scheme might be a good
candidate for general ocean modelling. The
loss of accuracy of second-order FD meth-
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ods in presence of step-like geometry is less
than one order. This loss is less compared
to that suffered by the 4th order FD model.
A second order FD model might thus still
be competitive compared to intricate LBB-
complying FE methods. However there are
other limitations. From Chapter 1 we know
that FD methods have problems represent-
ing the fast Kelvin modes if the resolution
is too low compared to the radius of defor-
mation. Therefore, a FD model should have
many points resolving the radius of deforma-
tion, which significantly increases the cost.
However, in the context of the Munk prob-
lem, it is not clear how retarded Kelvin waves
affect the steady state of the ocean. We pro-
pose to further investigate these issues in the
context of the single gyre Munk problem in
Chapter 4.



Chapter 4

Finite Difference Methods in

Rotated Basins

In this chapter, we further investigate the
influence of steps on finite difference mod-
els and, in particular, we consider the ac-
curacy of model vorticity budgets for wind-
driven circulations under the free-slip dy-
namic boundary condition. Free-slip circu-
lations are typically more energetic than no-
slip circulations, e.g. Pedlosky (1996). He
considered the vorticity budget for a quasi-
geostrophic (QG) model. Simple scaling ar-
guments reveal that vorticity is more eas-
ily fluxed out of the basin when no-slip
conditions are employed. When there is a
net vorticity forcing under free-slip condi-
tions, therefore, stronger gyres are needed to
achieve the necessary viscous flux of vortic-
ity across the basin boundary. The vorticity
budget is also an interesting diagnostic tool
because all the terms are in the form of do-
main integrals that can be transformed into
boundary integrals. This suggests that val-
ues of these integrals may be very sensitive to
coastline representation and that careful con-
sideration of the vorticity budget may give
further insight into the effect of steps on the
overall strength of the gyres. The difficulty
is in deriving a vorticity budget consistent
with the model’s numerical formulation.

We propose to test different formulations
for the advective and diffusive terms for the
shallow water C-grid model detailed in Sec-
tion 4.2. Additionally, we use vorticity bud-
gets to investigate problems we found with
the B-grid model in Section 4.3. Finally,
we draw some similarities with results from
a quasi-geostrophic (QG) FD model in Sec-
tion 4.4. Indeed, it may seem reasonable
that vorticity budgets are more accurate in
QG models since the vorticity equation is

solved instead of the primitive equations.
Section 4.1, 4.2 and 4.4 are excerpts from a
paper we intend to submit to Tellus (the au-
thors are Frédéric Dupont, David N. Straub
and Charles A. Lin).

4.1 Introduction

To date, there have been few studies focusing
on the issue of coastline representation in fi-
nite difference models. Schwab and Belestky
(1998) studied the influence of steps on in-
viscid Kelvin waves. Adcroft and Marshall
(1998, hereafter referred as AM) addressed
the problem in the context of the single gyre
nonlinear Munk problem using a C-grid shal-
low water (SW) model. They showed (as
did Cox, 1979) that the horizontal circula-
tion under no-slip boundary condition is not
very sensitive to the presence of steps along
the coastline. This can be explained by the
fact that the core of the boundary current
under no-slip is located a few grid points in-
side the interior of the basin.

For free-slip, however, they compared re-
sults from non-rotated and rotated square
basin experiments and showed the circula-
tion to be highly sensitive to the presence of
steps along the walls. In rotated basin exper-
iments, the basin was rotated relative to the
grid axes (see Fig. 2.1), but the wind forc-
ing and north-south axis were kept constant
relative to the basin, so that the only differ-
ences between the experiments are due to the
discretization. The presence of steps along
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the boundary tends to reduce the strength
of the circulation to the extent that results
obtained using free-slip boundary conditions
with step-like boundaries more closely resem-
bles those with no-slip boundary conditions
than free-slip solutions without steps. More-
over, they showed that, at least for small ro-
tation angles, sensitivity to steps under free-
slip conditions could be greatly reduced by
using a vorticity-divergence formulation of
the viscous stress tensor (Madec et al., 1991),
hereafter referred as the - formulation.

We conclude this section with two re-
marks. The first concerns the representa-
tion of the coastline in FD models. Some
methods exist to treat exactly a coast not
oriented along the discretization axes (e.g.,
Forrer and Jeltsch, 1998). These methods
have their own limitations such as time-step
limitation problems and the treatment of vis-
cous stresses at the boundary. However, the
emphasis of our study is not on developing
or investigating new FD models. The second
issue relates to the kind of idealized experi-
ments we have performed. We have deliber-
ately introduced artificial steps in the model
boundary in these experiments. The precise
applicability of our results to a real ocean
basin with irregular coastline remains to be
determined.

4.2 Vorticity Budgets in a C-
grid SW Model

In this section, we compare the analytic vor-
ticity budget with the equivalent discretized
vorticity budget for a C-grid shallow water
(SW) model and explain why the two bud-
gets do not match. We then give results
for the discretized vorticity budget and dis-
cuss the implications in terms of modelling
of wind driven gyres in presence of step-like
coastlines.
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4.2.1 The General Form of the Dis-
cretized Vorticity Budget

We consider the shallow water equations
du+u-Vu+ fkxu+ V(gh) =

% +vVia (4.1)

Oh+V-(uh) =0 (4.2)

where the variables are given in Table 2.1.
It is sometimes convenient to recast the non-
linear terms in (4.3) in the following form:

diu+ gk x (uh) + VB = % +uV2iu, (4.3)

where ¢ and B are also given in Table 2.1.
The kinematic boundary condition is no nor-
mal flow and the dynamic boundary condi-
tion is taken to be free-slip. The vorticity
equation is found by taking the curl of (4.3),

8¢+ V- (ghu) =k -V x (VVQu—F%)

(4.4)
Upon integration of this equation over a
closed basin, the divergence of the potential
vorticity mass flux cancels out and we get

B ¢ T-dl
Oy (/Q Cdxdy) = V]gﬂ %dl + ég —h(4 5)

Eqns. (4.1-4.2) or (4.2-4.3) can be dis-
cretized in different ways. To simplify the
discussion, we leave the time derivative being
continuous, and restrict ourselves to the C-
grid. A useful general form of the SW equa-
tion is the following;:

Tx

Gtu+0u+D;<I):E—m+Fx (4.6)

O + Cy + Dy & = %JrFy (4.7)
Oh+DFU+ DSV =0 (4.8)

where C = (C,,C,) represents the

advection-Coriolis terms, ® represents a po-
tential function, F= (F, F}) are the viscous
terms and other notation is described in Sec-
tion 2.2.2. The exact forms of C, ® and F
depend on choices made with respect to the
discretization. For example, ® might rep-
resent the Bernoulli function or simply the
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pressure, depending on whether a formula-
tion based on (4.1) or on (4.3) is employed.
We first make a general point about numer-
ical vorticity budgets and later discuss the
peculiarities specific to choices for C, ® and
F. From (4.6) and (4.7) we write the dis-
cretized vorticity equation

9, = -D; C, + D; C,

_ _ _ [Ty Tz
+D, F,— D, F, + D, (_—y> - D, (-—:;;) :
h h
(4.9)

This equation is defined at interior {-nodes
(excluding the boundary nodes), because it
requires defining momentum equations at all
neighboring velocity nodes (white squares in
Fig.4.1). Now we want to sum over all inte-
rior (-indices in order to get the model vor-
ticity budget. For simplicity, we write vec-
tors in place of z— and y— components, even
though the components are not discretized at
the same location (see Chapter2):

-
0, = ).
t.z CAzAy ”Z (C+F+ h) Al ,
1j€Q 1jE€0Q¢

(4.10)
where 62 is the ensemble of indices repre-
senting the velocities nodes of the envelope of
the interior vorticity node domain, ¢ (black
nodes in Fig.4.1). We rewrite (4.10) in a
more convenient form by defining

Faaw= Y, C-Al, (4.11)
i €6
Fois= Y F-Al,  (412)
i €6
T
Fi= )Y, = Al (4.13)

ijesQ,

Thus (4.10) becomes

Oy Z CAJ:Ag =Fi+Fo = Fit+FadvtFuvis -
ijeQe

(4.14)
Fi (flux in) is the wind input of vorticity and
F, (flux out) is the sum of the viscous dif-
fusion flux, F,;s, and of the advective flux,
Fady- The important point here is to note
that F,q, ideally should be zero since it rep-
resents an advective flux through the basin
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lateral boundary. It is not zero in the numer-
ical model because the domain boundary for
the model vorticity budget is located half a
grid point inside the domain (see Fig. 4.1).
However, as the resolution increases, the re-
gion delimiting the vorticity budget domain
approaches the model boundary and, F,q4,
should converge to zero. How quickly this
occurs will depend on the numerical formu-
lation.

It is always possible to approximate the
vorticity budget at the model boundary by
using off-centered derivatives and interpolat-
ing some of the variables to the boundary.
The model numerics, however, make no use
of variable values found by such an interpo-
lation and therefore, a vorticity budget cal-
culated in this way must be considered dis-
tinct from the model vorticity budget. Such
a budget might misrepresent the contribu-
tion of the different terms of the discretized
equations of the model, especially if the error
introduced by the coastline discretization is
of lower order than are the truncation errors
of the model. For this reason, we prefer to
use the model vorticity budget. We note also
that the truncation errors in the model vor-
ticity budget are larger than the truncation
errors in solving the shallow water equations,
since vorticity is a higher order variable.

Figure 4.2 compares the rotated and non-
rotated basin cases. The integrand (C- Al—
i.e. the local F,q,) is plotted as a function
of distance around the basin perimeter and
the position of the steps is evident from the
abrupt jumps in the integrand value. When
summed along the perimeter, F,4, is non-
zero and is larger for the rotated basin ex-
periment compared to the non-rotated basin
experiment. Starting from this observation,
we are interested in quantifying the impor-
tance of the steps over the global vorticity
budget. First, as increased resolution leads
to more steps, and due to the singular be-
havior of C- Al close to steps, it is no longer
obvious that F,4, converges to zero with in-
creasing resolution. From this point of view,
Fadv 18 probably very sensitive to the formu-
lation of the advective terms in (4.10), and
extension in (4.1,4.3). Second, we want to
investigate whether the overall circulation is
sensitive to the presence of an extra term in
the global vorticity budget, as F,4, can be a
source or a sink term, depending on its sign.
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4.2.2 Numerical Formulations

We are interested in applying different for-
mulations for the advection-Coriolis terms
since we noted that F,q4, was generally non-
zero for the single gyre Munk problem, with
the integrand being particularly large at
steps. The two advective numerical schemes
that we consider are the conventional formu-
lation (based on Eq. 4.1) and the potential
enstrophy conserving formulation (based on
Eq. 4.3).

In addition to testing for sensitivity to the
choice of advective schemes, we also consider
different formulations of the stress tensor.
That the overall circulation is primarily sen-
sitive to the formulation of the stress tensor
is the main result of AM, who found that the
0-¢ formulation gave better results than the
conventional formulation. We refer to Gent
(1993) and Shchepetkin and O’Brien (1996)
for a more complete discussion on appropri-
ate viscous stress tensor formulations for the
shallow water equations and we limit our-
selves to the two stress tensor formulations
used by AM. Below, we review these two for-
mulations. Thus, we are interested in testing
four combinations of two advective and two
diffusive formulations. Table 4.1 summarizes
these four different combinations.

With respect to the advection-Coriolis
terms, we compare the conventional formu-
lation to the potential enstrophy conserving
formulation of Sadourny (1975). For the con-
ventional formulation, C and ® are given by

Cu = uD2u + " Dju — fv™’
Cy = uD%v + v Div + fo°’
® =gh,

(4.15)

and for the potential enstrophy conserving
formulation, C and ® are given by

Cu= V"
Cy =T
® = gh + %(uQm +112y) .

(4.16)

Both formulations ensure a second order ac-
curacy to the discretized SW equations. For
the conventional formulation, changes are
made to incorporate the boundary condi-
tions at second order of accuracy, by using

off-centered differencings close to the bound-
ary. No boundary condition for the vortic-
ity is required. However, since the enstrophy
conserving scheme explicitly uses the vortic-
ity, this formulation requires that vorticity
be specified at boundary points. We choose
to set the relative vorticity to zero along the
model boundary, which is consistent with the
free-slip boundary condition along straight
walls. Also, contrary to the conventional
formulation, no off-centered differencing is
needed at the boundary for the computation
of C.

The two numerical formulations that we
consider for the viscous terms are the
divergence-vorticity tensor formulation of
Madec et al. (1991) and the conventional
five-point Laplacian. For the latter,

(w2, = Yizli = 2uij + Uit
1) A 2
X
_’_Ui,jfl — 2uij + w1
Ay?
) (4.17)
2 Vi—1,j — 2Vij + Vit1,
Vivij = Ax?
| Vi =1 = 20 + Vi
A 2
| y

As with the conventional advection formu-
lation, changes are made here to incorpo-
rate the boundary conditions at second or-
der accuracy, by using off-centered differenc-
ings. Another technical remark concerns the
treatment of velocity points close to tips of
land. For those points (the v and v points of
Fig. 4.3), the tip of the land is half a grid cell
away. Let us focus on the u-point. The prob-
lem is to evaluate the Laplacian of u at this
point. A five-point Laplacian requires knowl-
edge of du/dy in the center of the northern
and southern sides of the cell surrounding
the u-point, and du/dz on the eastern and
western sides. The problem lies with du/dy
on the northern side. The usual treatment

would have
ou Ui jy1 — Uij
— = (4.18)
8y north Ay
which simplifies to
ou (27
— =——, (4.19)
ay north Ay

because of the impermeability condition
which sets u; j41 to zero. Alternatively, one
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might take impermeability to imply that the
tip is a stagnation point, in which case an
off-centered differencing leads to

du
dy

i 2 uij
= Ay

(4.20)

north

A third logical possibility would be to apply
the free slip condition at the tip to conclude
that

ou

(4.21)

north

We choose the latter (4.21), in order to let
the “fluid” slip as much as possible along the
walls since the first two conditions (4.19,4.20)
tend to slow down the boundary currents. A
more accurate formulation of the boundary
condition close to the steps can be derived us-
ing a finite volume formulation, which treats
the northern viscous flux as a mean between
(4.19) and (4.21). However, this would slow
down the boundary current due to the use of
(4.19). In addition, more accurate treatment
of the steps have limited value as the steps
are artificial.

The divergence-vorticity (0-¢) form of the
stress tensor leads to the following form for
the Laplacians

2, _ D=5 _ D+
{v uij = D36 — Dji¢ .22

V2v,~j = D;é—i—DjC

where § is the divergence expressed at the h-
location (center of the cell). This formulation
is more general in the sense that there is no
adjustment of the formulation at the bound-
ary. Another remark concerns the case of
straight walls. In that particular case, there
is no difference between the §-( stress tensor
formulation and the traditional formulation.
The difference is in the treatment of steps.

To illustrate this, we consider a compar-
ison between the two stress tensor formula-
tions for a forward step along a north-flowing
western boundary current. Choose (7, 7) so
that, in Figure 4.3, the {-point right at the
tip of the land corner would have (7, j+1) in-
dices (see Fig. A.1 for indices arrangement).
Thus, the viscous terms under the 6-¢ formu-
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lation are
V2u, = conventional part + 2’;71;
V2v;;+1 = conventional part + A(I,‘”Ay ’
(4.23)

where the additional terms are positive.
These additional terms represent a forward-
acceleration. As AM noted, a serious incon-
venience of the conventional formulation is
that, in presence of steps, there is “extra dif-
fusion” of momentum due to additional ve-
locity points set to zero at the boundary (the
impermeability condition), as compared to
the straight wall case. This extra diffusion is
respounsible for slowing down the boundary
currents. Therefore, the accelerating terms
of the 0-( formulation partly compensate the
decelerating terms of the conventional formu-
lation.

A final remark is that the divergence part
of the viscous forces cancels out in the vor-
ticity equation. Therefore, in the discretized
vorticity equation, the §-¢ formulation leads
to a viscous term that takes the form of the
five-point Laplacian of the vorticity. This is
not true of the conventional formulation.

4.2.3 Results

By studying F,4,, we want to address several
issues related to the accuracy of the differ-
ent combinations of the advection and diffu-
sion formulations and their influence on the
strength of the overall circulation. Firstly, a
major requirement is that, whatever the ge-
ometry of the basin, F,4, should converge to
zero as the resolution goes to infinity. This
test allows us to rank the performances of
the model for the different combinations of
advective and diffusive schemes. Of particu-
lar interest will be the importance of the ad-
vective formulation. A second concern is to
assess whether the size of the artificial source
or sink of vorticity due to F,4, influences the
overall strength of the gyres. A third concern
relates to the general accuracy of model vor-
ticity budgets.

To address these issues, we make use of
the conceptual experiment proposed by AM,
in which a single gyre Munk circulation is
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Advection Stress
Model
form tensor form
conventional
enstrophy
. stress
A preserving
. tensor
advection .
formulation
enstrophy | 0-C stress
B preserving tensor
advection | formulation
conventional
C conventional stress
advection tensor
formulation
] 0-( stress
D convent}onal tensor
advection | gy lation

Table 4.1: The four combinations of advec-
tion formulations and stress tensor formula-
tions.

computed in rotated and non-rotated square
basins. In both cases, all parameters and
forcing are unchanged except for the dis-
cretized coastline. The four combinations
(A, B, C, D) of numerical formulations we
propose to test are detailed in Table 4.1.
One remark concerns the non-rotated basin
results. There, since the conventional and
0-C stress tensor formulations are identical,
the results for the B combination are identi-
cal to the results for A. The same applies for
the C and D cases.

We reproduce the results of AM in Fig-
ure 4.4. This figure shows the elevation fields
for the A and B cases and for no rotation and
a small rotation angle of 3.4°. Clearly, the A
case shows circulation patterns collapsing as
the number of steps along the walls increases
whereas, for the B case, the circulation is
quite similar to the original non-rotated cir-
culation. The results for C are not shown
but are very similar to the results for A. The
results for D show a small increase in the
strength of the gyre compared to A, but the
original overall circulation of A-B with no ro-
tation is not recovered (not shown).

Figure 4.5a shows the kinetic energy as a
function of resolution for the various combi-
nations and for a rotation angle of 3.4°. Only
the B combination converges to non-rotated
solutions. The A and C results are almost
identical, but appear to converge to a kinetic
energy that is reduced by over a factor of 2
compared to the non-rotated cases. For the
D combination, kinetic energy decreases and
then tends to slightly increase with increas-
ing resolution and is generally much lower
than for A-B with no rotation or B with ro-
tation.

As mentioned, the first consistency test re-
lated to the vorticity budget is to verify that
Fadv converges to zero with increasing res-
olution. For all rotation angles considered
and for the B combination, this statement
appears to be true. For the other combi-
nations (A, C, D), such is not the case, at
least for certain angles. For instance, F,q,
tends to increase or stay constant for the A,
C and D combinations at 3.4° (Fig. 4.5b).
For the D case, F,4, increases dramatically
with increasing resolution —so much that
Fadv becomes larger than the wind input.
Associated with this is a reverse (negative)
viscous flux. This behavior may have con-
sequences on the stability of the model. Al-
though no obvious numerical instabilities oc-
curred for a rotation angle of 3.4°, numeri-
cal instabilities cause the model to crash for
other angles, for example at —30°. It seems
plausible that this behaviour is associated
with the large (and opposing) advective and
diffusive fluxes of vorticity near the model
perimeter. In any event, it seems reasonable
to conclude that the D combination is in-
appropriate. This implies that the 6-¢ vis-
cous formulation performs well only when
used is conjunction with the enstrophy con-
serving advection. This finding complements
that of AM. For the A and C combinations
(Fig. 4.5b), Fuqp does not converge toward
zero with increasing resolution. Hence, these
two combinations seem inappropriate, even
if the resulting solutions are always stable.

We now address the issue of possible cor-
relation between F,4, and the kinetic energy.
Given that inertial runaway (the inability of
simple models of the ocean to converge to
a reasonable statistical mean solution as the
eddy viscosity is decreased to the real value
of the viscosity found in water) appears to
be related to “difficulties” in balancing the
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global vorticity budget (Pedlosky, 1996), it
seems reasonable to ask whether the sign of
Fadv 18 correlated with an indicator of the
overall strength of the gyre, such as total
kinetic energy. For example, when F,g4, is
negative, it adds to the wind input of vor-
ticity and one might expect a stronger gyre
to result. Some evidence that this may be
the case is found by comparing B and D,
which share the same formulation of the vis-
cous terms. Figure 4.5b shows that F,4, is
positive and larger for D than is the case
for combination B. Thus the total wind plus
advective input of vorticity to the basin is
stronger in case B. As might have been an-
ticipated, B shows a more energetic circula-
tion (Fig. 4.5a). It is also interesting to see
whether there is any correlation between ki-
netic energy and the sign/strength of Fq,
for a given formulation of the numerics. We
restrict this discussion to the use of the B
combination. From figures 4.6 and 4.7, which
show the kinetic energy and advective/wind
vorticity input ratio for a range of resolution
and rotation angles, there does not appear to
be any striking correlation. In particular, if
we focus on the region of negative values of
Faav (i-e., for a case where F,g4, has the same
sign as the wind input), the kinetic energy
for this region is not larger than the kinetic
energy at the same resolution but for an op-
posite angle (in fact, the kinetic is slightly
lower). Presumably the added advective flux
in this region is locally balanced by the vis-
cous terms, so that processes analogous to
those thought to be responsible for inertial
runaway do not lead to an increase in the
overall strength of the gyre.

To conclude this section, we investigate
the general accuracy of model vorticity bud-
gets with respect to Fuq, using the B com-
bination, only, since this combination is the
only one showing a robust convergence to
zero with increasing resolution. As Fuq
should ideally not be present in the vortic-
ity budget, the viscous flux, F,;s, can be ei-
ther underestimated or overestimated (which
modifies the local balance at the wall and
therefore the strength of the gyre) and Fq,
can be viewed as an error. From Figure 4.8
and for the range of resolution we used, F,q,
varies between 5% and 50% of the wind in-
put. The order of the convergence for F,q4,
with increasing resolution is fairly close to
unity or slightly lower for all positive angles.
For negative angles, we did not compute the
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convergence order because F,q4, goes through
a minimum (Figure 4.7) and had not asymp-
toted to an uniform convergence order at the
highest resolutions we considered. A note-
worthy point is that the effect of increasing
the rotation angle (introducing more steps)
seems to decrease the convergence order (1/2
at 20°). Paradoxically, however, the conver-
gence order increases again to reach unity for
45°, the rotation angle at which the number
of steps is maximum. In fact, at this angle
Fadv even shows a negative offset compared
to the 0° angle.

Except for effects related to step-like
boundaries, that the convergence order is
unity follows directly from the order of dis-
cretization of the vorticity. Since the vor-
ticity is one order higher a variable than is
velocity, and since the velocity is computed
at second order accuracy, it follows that the
vorticity is at best accurate to first order.
Therefore, F,4, can be considered an explicit
first order (at best) error in the vorticity
budget. For the B combination, we observe
that the convergence order for F,q4, varies
between 1/2 and unity, depending on the ro-
tation angle. In the 1/2 order case, errors (or
discrepancies) vary between 25% (high reso-
lution) and 50% (coarse resolution) and, in
the first order case, they vary between 6%
and 22%. The errors are much larger for
the other combinations and can reach 100%.
This implies that the accuracy of comput-
ing vorticity budgets from primitive equa-
tions models is fairly low, especially in ab-
sence of attention to the numerics. These
errors may also vary a lot considerably with
the discretized domain geometry.

4.3 Vorticity Budgets in SW
B-grid Models

This section stems from our interest in gen-
eralizing our experience from C-grid vortic-
ity budgets to the B-grid (see Section 2.2.2).
Under free-slip boundary conditions, the
main difficulties arise from the fact that a
prognostic equation for the tangential veloc-
ity along the wall has to be solved. This
equation requires values of the pressure gra-
dient along the wall, although the nearest el-
evation points are half a grid cell away in the
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interior. The zero-order solution is to use
the same elevation value as at the nearest
interior point, but this solution yields un-
reasonable shears of the tangential velocity
close to the wall. In fact, the current along
the wall tends to be zero or opposite to the
overall gyre circulation. The problem stems
from a poor representation of the geostrophic
balance along the wall. For the current to
be maximal at the wall, the pressure at the
wall has to be larger than the pressure at the
interior points. However, since the free-slip
boundary condition yields a zero normal gra-
dient for the tangential velocity, this means
that the second derivative normal to the wall
of the pressure should be approximately zero.
Therefore, the pressure varies nearly linearly
in the normal direction to the wall.

We therefore tested a simple linear extrap-
olation, using two interior pressure points.
This approximation gives better results in
the sense that there is no longer opposite
currents along the wall. However the over-
all solution does not converge to the solu-
tion obtained with the C-grid model. Af-
ter six years of simulation, the kinetic en-
ergy is three times as much as for the C-
grid model (see Table 4.2). The circulation
is too strong. From a vorticity budget per-
spective, the model cannot flux out the wind
input of vorticity. The reason may come from
the presence of a pressure term in the vor-
ticity budget which acts as a torque'. This
term should normally be zero. It arises from
the non-cancellation of the pressure gradient
terms close to each corner of the basin. This
term is negative and therefore acts the same
way as the wind input (see Table 4.2). It
might be that the small discrepancy caused
by the presence of this pressure term in the
vorticity budget is enough that the model
cannot converge to a reasonable solution.
Nonetheless, we noted that the magnitude
of this term decreases with resolution and
might explain why the kinetic energy tends
to decrease with increasing resolution. Due
to the difficulty of tuning this free-slip B-grid
model, we quickly gave up the idea of gen-
eralizing the experiments performed in the
previous sections to the B-grid.

We noted however that some authors
tackle the problem of the B-grid under

!The advective and Coriolis contribution to the
vorticity is zero for the B-grid. See Appendix B.

Az 20 km | 10 km 5 km
K.
‘_Enigglg — | 2617 | 2473
mn
m’s~?
U EL L — | —0.2647 | —0.2606
1mn m=s
CFO ] 02639 | 0.2604
1 m-"s
ft)ress‘?re | —2.388 | —1.238
Y x1073 | x1073
m-s

Table 4.2: Summary of the vorticity budget
and kinetic energy diagnostics for the B-grid
after a spin-up of 6 years. Instantaneous val-
ues after a 6 year spin-up. The model vor-
ticity budget on a B-grid includes a pressure
term due to the non-cancellation of the pres-
sure gradient at the corners of the domain.

free-slip boundary conditions. Hsieh et al.
(1983), for instance, suggest the idea of
shifting the whole grid, so that elevation
points are on the boundary instead of ve-
locity points. The trouble then is that we
lose the main advantage of the traditional B-
grid which is that the region for the vorticity
budget domain is exactly the model domain.
Using the traditional implementation of the
B-grid, there is no advective flux of vorticity.
More recently, Beckers (1999) proposes to
keep the traditional B-grid and to iterate at
each time-step in order to get elevation val-
ues at land points close to the boundary that
yield a zero normal velocity. This solution is
of course more expensive. Unfortunately, we
did not try to implement one of these so-
lutions since our attention was already fo-
cused on more complex numerical methods.
It is sufficient to note that implementation
of free-slip boundary conditions are not triv-
ial on B-grids. This adds to problems en-
countered with a similar implementation in
a A-grid (see Section 3.4). Thus the free-slip
boundary condition does not seem to be such
an easy condition to implement in general in
any model.
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4.4 The
Model

Quasi-Geostrophic

4.4.1 Discretization

We also investigated the influence of coast-
line discretization in quasi-geostrophic (QG)
models, although our main interest in this
thesis is focused on the shallow water (SW)
models. QG models solve the vorticity equa-
tion directly. It seems therefore a reasonable
assumption that these models should yield
more accurate vorticity budgets than do SW
and primitive equation models. The vortic-
ity equation used is

AC+J (1, )+ PO = vV +k-V x (T(/4h%4),
where 1) is the streamfunction. Equa-
tion 4.24 corresponds to a barotropic and
geostrophic ocean with a rigid lid approxi-
mation. The wind forcing is altered to in-
clude the influence of the water depth in or-
der to better mimic the shallow water equa-
tions. The discretization of (4.24) is done
using second order center differencings. The
streamfunction formulation (¢ = V?2%)) leads
to a linear pentagonal system of equations
to solve at each time step. We used the sim-
ple leapfrog time integration and the viscous
term is discretized by the conventional five-
point Laplacian. We are interested in test-
ing different formulations of the Jacobian in
(4.24), as the formulation of this term may
have consequences for the vorticity budget
for the same reasons mentioned previously

for the C-grid model.

As for the SW C-grid model, the vorticity
budget for the QG model is defined only on
an interior sub-domain, half a grid point in-
side the model basin. This follows from the
fact that the vorticity equation is only solved
at interior points (see Figure 4.1). The dis-
cretized vorticity budget is

> olAzAy =

ijEQ,
> [-J - BDY + vV (4.25)
i§EQ

+D5(ry/h) — Dy(Tz/h) | AzAy ,

where notation is found in Section 2.2.2 and

(¢ is the ensemble of indices for points whose
location lies in the interior domain. By defin-
ing

iy =— Y JAzAy (4.26)
ijEQe

Fois =y, vV (AzAy (4.27)
ijeQe

Fo= > —BDpAzAy (4.28)

ijeQ
Aim Y

ijeQe
[Dg(my/h) — Dy(ra/h)] AzAy ,  (4.29)

we recast the vorticity budget in the follow-
ing form

Z OCATAY = Fog + Fe + Fuis + Fi -
ijE(SQC

(4.30)
One main characteristic of QG vorticity bud-
gets is the explicit contribution of the beta
term, F.. This contribution is hidden in F,g4,
for the SW models. Therefore, we define
Fadv here to be Foqy = F., + Fe, where
F! ;. represents the integration of the Jaco-
bian term over {2.. We focus our study on the

behavior of both F! , and F.. As for the C-
grid model, a minimum requirement is that
Fadv goe€s to zero at infinite resolution. This
also applies to F, , and F, separately. We
propose to test three different numerical for-
mulations of the Jacobian, .J;, J3 and J7, as
termed by Arakawa and Lamb (1977) (here-
after, AL77) and investigate their respective
influence on the vorticity budget. Other dis-
cretization techniques exist that nullify F,
such as that developed by Salmon and Tal-
ley (1989), but we fear that those techniques
miss the point that the vorticity budget can
not clearly be defined in the sub-region along
the boundaries. Such a technique may re-
duce the actual size of the model domain to
the point that the critical sub-region disap-
pears.

Representation of the Jacobian in (4.25)
has been extensively considered by Arakawa
(1966) and AL77. From the latter, we bor-
row the notation J;, where J is the dis-
cretized Jacobian and ¢ takes values between
1 to 7, depending on the discretized formu-
lation. The simplest representation is the J;
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Jacobian, where

Ji = Do(Dyyp — Dy( Dy (4.31)
Ji conserves relative vorticity in doubly peri-
odic domains, straight channels and rectan-
gular domains when the free-slip boundary
condition is applied. In fact, F,, is zero
for zero rotation angle because 7,/; and ( are
both zero at the boundary. However, due to
its poor conservation properties (energy and
enstrophy), other forms of the Jacobian have
been suggested.

ALT7 proposed the Js form of the Jaco-
bian which conserves energy in doubly peri-
odic domains

Js = DS(CDY) — D(CDo) . (4.32)
The J3 Jacobian conserves relative vorticity
in doubly periodic domains, but not in pres-
ence of boundaries. The boundary terms
that arise are relatively easy to pinpoint.
They correspond to the value (Dyjv or (D7

at locations one grid point away from the
boundaries.

It is interesting to note that the J3 for-
mulation is similar in structure to the advec-
tive terms in the SW vorticity equation when
the B combination, discussed above, is em-
ployed. For example, if we take u* = —Dyi)

and v* = D21, then J3 can be recast as J3 =
D3(Cu*) + Dy(¢v*). The advective term for

the B combination in the vorticity equation
takes the form of Dg(quwy) + DZ(@’”UIy).
Hence the two formulations use a divergence
form of the advection. Moreover, the vis-
cous term in the SW vorticity equation de-
rived using the §-¢ stress tensor formulation
is similar to the viscous term in the QG equa-
tion. Specifically, both take the form of a
five-point Laplacian of vorticity. Hence, we
expect that the results of the J3-QG model
should be similar to those of the SW model
using the B combination. Unfortunately,
there is no straight forward analog between
the conventional advection for C-grid and
any of the Jacobian operators suggested by
AL77. Therefore, we did not note any other
possible connections between specific aspects
of the QG and the SW numerical formula-
tions.

The last Jacobian formulation we propose

to test is the J7 and may be given as

1
Jrij = T2Azhy [

Cit1,j (Vi =1 + Yig1,j—1 — Vij+1 — Vit1,5+1)
—Ci15(Wic1j-1 i1 — Vi1 — Yige1)
+Cijr1(Yit1,5 + Yiv1j41 — Yio15 — Yi-15+1)

—Cij—1(Wig1,j-1 +Yix15 — Yic1j-1 — Yi-15)

+Cit1,+1(Yiv1,5 — Pij+1)
—Ci1,j-1(Yij1 —Yi-1;)
+Cio1,5+1(Pijr1 — Yio1,5)
—Cit1,j-1(Yit1,5 — Yij-1)]

(4.33)

This more intricate formulation (Arakawa,
1966) is known to conserve both the en-
ergy and the enstrophy in doubly-periodic
domains. The J; Jacobian also conserves
relative vorticity in doubly periodic domain,
but not in closed domains where complicated
boundary terms in F, , arise. This formula-
tion is very popular and is adopted in most
QG models.

4.4.2 Results

Using Jp, the solutions are very different
for positive and negative values of the rota-
tion angle of the basin. Positive angles are
characterized by larger kinetic energy and
stronger oscillations of a Rossby basin mode
(curve b of Figure 4.9), which appears to be
unstable at low resolution. However, with in-
creasing resolution (curves d-f of Figure 4.9),
the kinetic energy for both positive and neg-
ative angles seems to converge to the value
of kinetic energy for the non-rotated basin
cases (curves a,d). Nonetheless, we prefer to
discard this formulation of the Jacobian for
the rest of the discussion, due to its low level
of accuracy at moderate resolutions.

On the other hand, solutions using J3 and
Jr appear stable and converge reasonably
well with increasing resolution to the same
value of kinetic energy, for both rotated and
non-rotated basins (Fig. 4.10). Therefore,
this results contrasts with those of the SW
model for which the convergence was only
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obtained for the B combination. The QG
model appears to be less sensitive to grid ro-
tations and advective formulations.

In terms of vorticity budget, we are inter-
ested in the behavior of the advective contri-
bution, F,4,, with increasing resolution for
the J3 and the J7 Jacobians. Specifically, we
are interested in how the convergence order
for F, 4, differs in the QG model compared to
the SW model. As mentioned, F 4, is made
of two independent contributions, F,, and

Feo F! ady depends directly on the Jacobian
formulation but F. does not. Figure 4.11
shows the convergence of ¥, in rotated and
non-rotated basins for the two considered Ja-
cobians. F, . is close to second order in non-
rotated basins for both Jacobians. At 30°
rotation, however, the convergence order is
closer to unity for J3 but second order for
Jr.

We now analyze the convergence order for
Fe, the second contribution to F,q,. Fig-
ure 4.12 shows the convergence for F. in ro-
tated and non-rotated basins under J3 and
J7. The results appear independent of the
Jacobian formulation, as expected. The con-
vergence order is however unity, in contrast
with results for F/ , . This result comes read-
ily from the tra(ﬁtlonal treatment of the g
term. The proof is given in a square domain:

B Y DipAzAy=

ijE(SQC
i=nz—1

ﬁz Z ¢z+1 1/% L AzAy = (4.34)
i =2

/BZ ¢nz—12_¢2Ay :
J

since Y1 = v, = 0, by definition of no-
permeability. The west-east asymmetry due
to the beta effect imposes that ¢, _1 = ayo
with 0 < @ < 1 and all other parameters kept
constant. The factor, a, represents the ratio
of the velocity along west and east coastline.
Because 1,1 and > converge linearly to
zero with increasing resolution, the beta con-
tribution cannot have a better convergence
rate than one. In absolute value, F, is also
larger than F, , . Therefore, F,q, suffers pri-
marily from the Tow convergence rate of the
beta contribution, .. One can ask whether
we can get a better convergence order by

o7

including the planetary vorticity, Sy in the
Jacobian instead of treating it separately
(J (¢, ¢+ By) instead of J(1), () + S0z1). We
conducted this experiment with the best ad-
vective formulation, the J;. However, con-
vergence order of F,q, is again unity and er-
rors are very similar to the previous case (not
shown).

One last point we would like to make is
related to similarities mentioned above, be-
tween the J3-QG and the B combination of
the SW model. Figure 4.14 shows Fl
and F,q, with increasing resolution fl r J3
and under -30° rotation angle. F!,  is neg-
ative, goes through an minimum and, then
increases toward zero, whereas F, is positive
and decreasing to zero. Hence, F, 4, appears
to go through a pool of negative values, just
as the B results showed. This contrasts with
results using J7 for which F| , takes positive
values for both negative and’ positive rotation
angle (not shown).

To conclude, except for the J; Jacobian,
the QG model is less sensitive to the basin
rotation, in contrast with results for the SW
model. Convergence orders for the advec-
tive flux of vorticity, Fuqy, on the other hand,
are order 1 or less—comparable to what was
found for the SW simulations. In the QG
case, this low order of convergence is related
to the beta contribution, F,.. Using J7, |Fadv
varies between 5% (high resolution) and 20%
(coarse resolution) of the wind input depend-
ing on the rotation angle. These results are
somewhat better than those obtained in the
SW simulations.

4.5 Discussion and Conclu-
sion

Due to their fractal nature, realistic coast-
lines have features down to the model reso-
lution. While the ultimate goal would be to
correctly account for such features in models,
a less stringent test is that models should
be able to deal with simple geometries, in
a manner that is not sensitive to artificial
steps introduced by the discretization. Such
was the study of AM, based on free-slip sin-
gle gyre Munk experiments. As we noted
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that there was an inconsistency in the dis-
cretized vorticity budget for the C-grid shal-
low water model, we decided to revisit the
AM results in terms of global vorticity bud-
gets with varying resolution. Our goal was
to investigate the influence of the formula-
tion of the advective and viscous terms on
the model vorticity budget and the overall
strength of the gyre.

AM showed that the conventional viscous
stress tensor formulation was inappropriate
in the rotated basin case, for steps occur-
ring along the coast. Moreover, they made
use of an alternative stress tensor formula-
tion (called herein 6-( tensor) and showed
improved results. We analyzed further the
difference between conventional and §-¢ ten-
sor formulation along with two different for-
mulations of the advection in the momentum
equations in term of global vorticity budgets
with varying resolution. One observation is
that the results with the §-( stress tensor
depend strongly on the formulation of the
advection, as the conventional advection for-
mulation leads to instability (the D combina-
tion). Therefore, the formulation of the ad-
vection seems equally important in explain-
ing the AM results. In terms of vorticity bud-
gets, all combinations seem to be ill-behaved
except for the enstrophy conserving advec-
tion and the - tensor (the B combination).
For this combination, the convergence order
for F,qy is about unity, following the trunca-
tion order of the vorticity when derived from
second order velocity.

For the QG model, the overall circulation
is less sensitive to the rotation of basin for all
Jacobians we tried. In order of increasing ac-
curacy, Ji gives the lowest level of accuracy
(showing even signs of instability at low reso-
lution), followed by J3 and then J;. The best
convergence order for F, , was obtained by
using the J7 Jacobian and was about 2, for
all rotation angles. The beta contribution,
Fe, is independent of the formulation of the
Jacobian. Its convergence order is very close
to unity and its magnitude is usually larger
than that of F,, . Therefore, most of the
discrepancy between the real and the model
vorticity budgets is concentrated in the beta
contribution at sufficiently high resolution.
Hence, in order to make accurate vorticity
budgets, it follows that the beta contribution
should be more accurately computed. One
possibility is to increase the order of the fi-

nite differencing operator for the beta term,
B0y1. Finally, the hypothesis that the Js3-
Qé/ model would give similar results com-
pared to the enstrophy conserving advection
and the 0-C tensor C-grid model was verified.

From the general point of view of com-
puting vorticity budgets from finite differ-
ence models, both QG and C-grid models
show the same relatively slow convergence
order (about unity) of the discrepancy with
increasing resolution between the real and
the model vorticity budgets. For the range
of resolution considered, and depending on
the model type (SW or QG), numerical for-
mulations and the rotation angle (or more
generally, basin geometry), this error can be
estimated to vary between 5% to 50%.

As for the general accuracy of FD models
in presence of steps for wind-driven circula-
tions under free-slip, the rotated square basin
experiments show that the B combination for
the C-grid model and the J3 or J7; for QG
model give satisfactory results. We were not
able to get satisfactory results out of a con-
ventional B-grid model, though. This spatial
staggering of velocity and elevation does not
seem to suit very well the free-slip boundary
condition, even in presence of straight walls.
The next chapter considers the more general
case of a smoothly varying coastline for the
Munk problem.



CHAPTER 4.
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Figure 4.1: Locations of variables near a step
for the SW C-grid model (left panel) and for the
quasi-geostrophic (QG) model (right panel). For
the SW model, dashed squares are the boundary
normal velocity nodes, white disks are the vortic-
ity nodes where the relative vorticity is specified
to be zero and black disks are the vorticity nodes
for which a discretized vorticity equation can be
written. In grey is the region delimiting the vor-
ticity budget domain. This region does not ex-
tend to the model boundary. Instead, there is an
half cell band around the boundary (left in white)
where we cannot derive any budget. A similar
problem exists for the QG approximation.
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Figure 4.2: Local advective flux along the

boundary (C-Al/||Al|]) at 20 km resolution in a
square basin for the enstrophy conserving formu-
lation of the advection using the B combination
of Table 4.1. The heavy-lined curve is for no ro-
tation of the basin, the light-lined curve is for
a small angle rotation of the basin (3.4°) with
respect to the grid. Due to the rotation angle,
4 steps occur along each side of the square and
cause abrupt changes in the local advective flux.

—

Figure 4.3: Northward flow past a forward step.
The shaded area is the model domain. We con-
sider only the two momentum nodes for which the
0-¢ formulation differs from the conventional for-
mulation. The (-point at the tip of the continent
has (i,7 + 1) indices. Arrows indicate direction
of the flow.
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Figure 4.4: Elevation fields in meters after a 6 year spin-up for 20 km and 10 km resolution. Shown
are results from the A and B combination (Table 4.1) with or without a 3.44° rotation angle of the
basin. Note that the B case tends to resemble the A-B case with no rotation, but not the A case.
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Figure 4.5: (a) Kinetic energy after spin-up and (b) ratio of F,q4, to F; for the four combinations
combinations. Results are shown for a 3.4° rotation angle of the basin. The A-B (no rotation) curve

is also plotted for comparison.
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Figure 4.9: Kinetic energy during spin-up for six
runs using the J; Jacobian: (a), 0° angle at 20
km resolution; (b), 30° angle at 20 km; (c),—30°
angle at 20 km; (d), 0° angle at 10 km; (e),30°
angle at 10 km; (f),—30° angle at 10 km;



CHAPTER 4. FINITE DIFFERENCE METHODS IN ROTATED BASINS 62

1200 T T

1
T 1000 | €. p
a2 -
% - 2
o
- L 4 =
g % 8
> c
o =
(]
5 600 f 1 Z
400 : :
0.05 0.1 0.15 0.2 0.01

0.05 0.1 0.15 0.2

Resolution 1/DX (1/km) Resolution 1/DX (1/km) (log)

Figure 4.10: Kinetic energy after spin-up for (a)
Js at 0° rotation, (b) J7 at 02, (c) J3 at 30°, (d)
Jr at 30°, (e) Js at —30°, (f) J; at —30°.

Figure 4.12: Ratio of F, to the wind input. (a-
d) as described in Fig. 4.10.
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Chapter 5

Single Gyre Circu

lation 1n

Irregular Domains

In this chapter, we explore the issue of
the inertial runaway (to be defined below)
for the single gyre Munk problem with free-
slip boundary conditions from two perspec-
tives: scaling arguments and numerical sim-
ulations using the spectral element model.
In the previous chapters, we investigated the
accuracy of different numerical methods and
found that the spectral element (SE) model
offers high accuracy in irregular domains and
nonlinear flows, whereas the other methods
present various limitations. This chapter is
both an application of the SE method and
a contribution to the understanding of the
runaway problem.

5.1 Review of the Single
Gyre Problem with Free-
Slip Boundary Condi-
tions

As stressed by Pedlosky (1996), the single
gyre (as opposed to the double gyre) Munk
circulation faces the unique challenge that, in
terms of vorticity budget, all the wind input
has to be fluxed out of the domain by means
of the viscous flux in order to yield a steady
or statistical mean solution. At equilibrium,
the vorticity budget becomes:

/

To be precise, we refer to the single subtropi-
cal (anti-cyclonic) gyre problem in the north-

T

. (5.1)

dl—i-z/j{%dlzo.
on

64

ern hemisphere for the single gyre problem.
In that particular case, the wind input to the
vorticity budget, the first term in (5.1), is
negative. Although the single gyre problem
is extreme in that the vorticity input is one-
signed, most people consider the double gyre
problem (i.e., when the forcing integrates to
zero) to be a special case. There is typically a
net vorticity input of one sign or another into
the ocean, and therefore, in the generic case,
the system needs to dissipate some vorticity.
The single gyre problem is certainly extreme,
but it is argued after that some of its charac-
teristics make this problem even more inter-
esting and challenging. Moreover, for the sin-
gle gyre forcing, there is a strong correspon-
dence between the difficulty of balancing the
vorticity budget and the strength of the over-
all circulation, since the second term in (5.1)
links the magnitude of the eddy-viscosity, v,
to the importance of the normal derivative
of the vorticity. This derivative is related to
the strength of the circulation. As v is re-
duced, the integral of the derivative must be
augmented in proportion to yield an equiva-
lent balance. The difficulty of balancing the
vorticity budget is also dependent on the dy-
namical boundary condition. The vorticity
balance is more difficult to achieve when free-
slip boundary conditions are employed, as
opposed to no-slip. Using free-slip conditions
(see Chapter 1), the vorticity at the bound-
ary is zero along straight walls and, under
no-slip, it can reach large positive values,
whereas the vorticity is mainly negative in
the interior due to the negative wind input.
Therefore the normal derivative of the vor-
ticity, d(/0dn, is much higher in the no-slip
case than in the free-slip case, fluxing more
easily the vorticity through the boundaries.
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This enables gyres under no-slip to achieve
weaker circulations compared to gyres under
free-slip.

The importance of the nonlinear terms
with respect to the viscous forces is com-
monly scaled by the Reynolds number, R..
For Munk circulations, it is more convenient
to relate the Reynolds number to the dynam-
ics of the boundary layer (see Pedlosky). R,
is therefore defined as

5 \?
R.=[—
‘ <5M>
where dp7 and 07 are respectively the Munk
and inertial numbers. They are defined as

1/3 1/2

where Vg, is the Sverdrup velocity and L
is the width of the basin. In scaling ar-
guments, Vg, is usually taken as the max-
imum value observed in the interior away
from the boundary layers. We prefer to use
the mean value of the Vg, which can be ob-
tained by integrating the Sverdrup relation
over the whole domain except for the bound-
ary layers/footnoteThis choice is motivated
by the quantitative estimations of coming
Section 5.4 which are based on vorticity bud-
gets arguments and are better approximated
by using the mean rather than the maximal
Sverdrup velocity. There is also a a poste-
riori and cosmetic argument related to the
fact that the transition between the Sverdrup
interior solution to a Fofonoff-type interior
solution (explained at the end of this para-
graph) occurs at R, ~ 1 if a mean Sverdrup
velocity is chosen but will occur at Re ~ 4 if
the maximum Sverdrup velocity is chosen.:

ot

For the wind forcing under consideration,
B =1.6x10"" m~'s~! and assuming that
h ~ H along the walls, the mean Vg, is ap-
proximately 1.25x 1072 m/s. This choice will
lead to smaller values of R, when compared
to other authors’ results. Another impor-
tant remark concerns the physical meaning
of these two numbers. d3; and 67, multiplied
by the width of the basin, L, yield respec-
tively the thickness of the Munk and iner-
tial layers. These are the lengths at which

(5.2)

Vsu -dl . (5.4)
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the vorticity varies in order to yield a bal-
ance between the viscous terms and the beta
term, and a balance between the advection
and the beta term, respectively. The Munk
layer exists only for weak nonlinear terms.
When these nonlinear terms are large enough
(R ~ 1 and beyond), the inertial boundary
layer prevails along the western boundary. In
such a case, the Munk layer is replaced by a
viscous sublayer whose thickness is given by
Lé%, where

or
VR

%, comes from the evaluation of the bal-
ance between the advection and the viscous
terms. These nonlinearities, and the pres-
ence of the inertial layer, introduce more dif-
ficulties in achieving a vorticity balance. For
instance, in the absence of eddies, the inertial
layer inhibits the transport of vorticity from
the interior to the walls because, there, the
streamlines and absolute vorticity contours
are nearly parallel. Therefore, the negative
input of vorticity in the interior of the ocean
cannot be easily fluxed out. This favors an
even more inertial and energetic interior low
and, when the Reynolds number is beyond a
critical value, a Fofonoff-type gyre develops
(as opposed to a Sverdrup interior) with un-
realisticly large speeds of the order of 50 m/s.
This is the so-called inertial runaway prob-
lem. According to Pedlosky, this scenario
also occurs in the presence of no-slip bound-
ary conditions, the no-slip only retarding the
occurrence of the jump to the highly ener-
getic branch (where the Fofonoff-type gyre
lies). Moreover, he states that the inertial
runaway is not just a feature of steady so-
lutions but is prone to appear in unsteady
solutions, as well.

oy = (5.5)

Indeed, Ierley and Sheremet (1995) ob-
serve this runaway scenario for the free-slip
condition in steady and unsteady circula-
tions in rectangular domains for single gyre
forcing. Under free-slip, there is no differ-
ence between unsteady and steady solutions
because the eddy activity is very weak in un-
steady solutions. However, no-slip steady
and unsteady solutions are usually differ-
ent. Nonetheless, Sheremet et al. (1997)
demonstrate that the same runaway prob-
lem occurs in rectangular domains when the
no-slip condition is applied to the western
and eastern walls (repeating the experimen-
tal setup of Bryan, 1963). They note that,
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after the unsteady and steady solutions first
depart, the strength of the circulation does
not increase with increasing Reynolds num-
ber because the eddies efficiently remove the
excess of vorticity produced in the bound-
ary layer. However, past a critical Reynolds
number, they note that the mean circula-
tion strengthens again, the eddies being no
longer efficient in removing the excess of vor-
ticity. Veronis (1966) for the single gyre and
Primeau (1998) for the double gyre demon-
strate that the runaway scenario is also ob-
served for bottom friction only models. Ped-
losky (1996, p87) and Ierley and Sheremet
are convinced that their runaway scenario
is universal, based on their experience with
stratified quasi-geostrophic (QG) unsteady
simulations in idealized geometries. Accord-
ing to them, no convergence of the statistical
steady state can be achieved with increas-
ing Reynolds number, whatever the type of
boundary conditions. Of course, the latter
argument conflicts with our day-to-day expe-
rience. As far as we know, the Gulf Stream
circulation has not blown up! Nonetheless,
these authors bring strong numerical evi-
dences in favor of their arguments. There-
fore, where is the flaw ?

From the perspective of time-dependent
simulations, one aspect of the results of
Sheremet et al. (1997) remains question-
able. This is related to the use of no-slip
boundary conditions in unsteady solutions.
The fact that no-slip circulations are prone
to barotropic instabilities cannot be under-
estimated from the point of view of the iner-
tial runaway. These instabilities may be suf-
ficient to produce eddies which would trans-
port the vorticity through the inertial layer
to the viscous sub-layer, where it can be
fluxed across the wall. However, no-slip cir-
culations are very demanding in terms of
computer resources and, therefore, the issue
is still unresolved. One possibility is that we
still need more resolution (to achieve larger
R.) in unsteady no-slip circulations. A sec-
ond possibility is related to the use of overly
idealized geometries in the aforementioned
results. Finally, a third possibility is that
the models used in those results are too sim-
ple. From this last point of view, we may
lack certain physical processes which are im-
portant for the downward cascade of energy.
In favor of this argument, Scott and Straub
(1998) noted that, under no-slip, the Rossby
number (which scales the nonlinear terms to
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the Coriolis forces) increases quickly with in-
creasing Reynolds number. Since the QG
approximation applies only for small Rossby
number, R,, large R, means that the rather
inexpensive QG models cannot be used for
even such idealized experiments, but have to
be replaced by, at a minimum, more costly
shallow water models.

Figure 5.1: Notation corresponding to the
curvilinear coordinates.

In favor of these three arguments, recent
high resolution (1/4 to 1/64 degree) simula-
tions of the Atlantic were conducted using
the MICOM model (i.e., an isopycnal prim-
itive equation model) and showed that the
mean circulation converges to a more and
more realistic state with increasing Reynolds
number (Hulburt and Hogan, 2000). The
eddy-viscosity was lowered from 100 to 3
m?/s. The problem with this kind of experi-
ment is that it is difficult to distinguish which
physical processes or technical details are
necessary to obtain the convergence with in-
creasing Reynolds number. We believe that
one important distinction comes from the
geometry. Theoreticians typically focus on
rectangular domains whereas primitive equa-
tions models are generally run in more real-
istic geometries. Irregular geometries may
be sufficient by themselves to provide the
necessary source of eddies in order to get
weaker and more realistic circulations at high
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Reynolds number. An irregular geometry—
especially irregular along the western coast-
line where the currents are the strongest—
may also provide stronger interactions be-
tween geostrophic and ageostrophic modes,
and hence may facilitate a forward energy
cascade. The latter process is absent from
idealized early experiments which are based
on the QG equation. Thus, the shallow wa-
ter equations are a good starting point for
our investigation. Furthermore, we believe
that having irregular boundaries is more im-
portant than the choice on the type of dy-
namical boundary conditions. In the context
of the double gyre forcing of the Munk prob-
lem, Scott and Straub (1998) show that the
increase in kinetic energy of non-symmetrical
steady solutions and time-dependent mean
solutions tends to level off as the Reynolds
number increases for the two boundary con-
ditions. Therefore, the idealized double gyre
experiment where the wind input to the vor-
ticity budget cancels may exhibit less se-
vere inertial runaway. Contradictory evi-
dence against inertial runaway has yet to
be found in single gyre circulations where
the wind input of vorticity is single signed.
Therefore, we will conduct experiments using
the free-slip boundary condition since many
evidences exist for a robust inertial runaway
under free-slip in rectangular basins. In fact,
under the free-slip boundary condition, irreg-
ular boundaries are the only way to produce
positive vorticity which is essential to the
production of eddies. The vorticity can be
expressed using curvilinear coordinates fol-
lowing the wall as

ov, s Un

0s

R, R’

_ Ovs

¢ on

(5.6)

where (s,n) are respectively the coordinate
along and normal to the wall, v; and v, are
the velocity components respectively along
s and n and Rs; and R, are the respective
radii of curvature of the axes along the wall
and normal to the wall. (notation is shown
in Figure 5.1). Right at the wall and under
the free-slip boundary condition (as defined
in Chapter 1), the equation reduces to

Vs

(=f -

(5.7)
If the velocity at the wall is close to 1 m/s
and the radius of curvature along the wall is
of the order of the 10 km, ¢ is of the order

of 10=* s™!, that is, of the order of f; '.
One way to evaluate the Rossby number is to
measure the ratio of {/fy. Therefore, if the
radius of curvature is of the order of 10 km,
we can obtain Rossby numbers of the order
of unity; that is, well beyond the range for
which the QG approximation applies. This
stresses again the need to use the primitive
equations. 10 km is also somewhat below the
radius of deformation for the first baroclinic
mode given the value of the parameters we
use (Lr ~ 31 km). This means for instance
that Kelvin waves may encounter difficulties
in going around such geometrical features.

5.2 Model Selection and Ex-
perimental Design

In order to test these arguments, we con-
sider the following experiment. The set-up
consists of wind-driven circulations in five
different geometries (Figure 5.2). The first
is a circular geometry with the radius given
by L. = 500 km. The second is a pertur-
bation of the first geometry by the addition
of a wavy pattern along the coastline in the
form of a sine wave. We choose the wave
length to be a 1/16 of the perimeter. The
amplitude of the sine wave from a crest to a
trough is 12.5 km. The third geometry is the
same one except that the amplitude of the
sine perturbation is 25 km. The amplitude
for the fourth and the fifth is respectively
50 and 100 km. The radius of curvature was
computed using the simple relation:
oe, 1
Os R, n
where e; and e, are the orthonormal unit
vectors associated with the directions s and
n. For a sine wave given by y = hg sin(kx)
the minimum radius of curvature is given by
1

— = hok?
R, °

!Using Pedlosky’s definition for free-slip instead
of the current one, as defined in Chapter 1, the rela-
tive vorticity can reach larger values. If a fluid par-
cel passes east of a obstacle and flows anticlockwise
around it in a steady state, we have du/dy < 0.
Using the mass conservation equation, this leads to
Ov/0x > 0. Therefore, according to (5.6), ( > V/Rs,
i.e., the vorticity is larger.

(5.8)

(5.9)
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III

Figure 5.2: The five geometries used for our
application of the SE method. The circle is
deformed by super-imposition of a coastal os-
cillation of the form of a sine wave. For Ge-
ometry V, we label the bumps for later refer-
ence starting from the first bump west of the
north-south axis passing through the center
of the basin and we then proceed anticlock-
wise. The same labeling applies for the other

In the context of the circular geometry, we
can correct the radius by using the relation:

1 , 1
z. hok —i—LC (5.10)
Hence, the minimum radius of curvature for
the second geometry is about 160 km and
80 km, 40 km and 20 km for the third,
fourth and fifth geometries. We use three
values of the eddy-viscosity (v = 700, 300,

100 m? s72). The wind-forcing is the same
as applied in the previous chapter for single
gyre Munk problem. The Reynolds bound-
ary number ranges therefore from 0.5 to 3.5.
For comparison, Scott and Straub (1998)
reached impressive values of about 35 for
double gyre steady circulations with a QG
model. In contrast, our maximum achieved
value of R, = 3.5 is lower. However, in the
context of unsteady solutions in irregular ge-
ometries using a shallow water reduced grav-
ity model and due to our definition of Vg,,
this can be considered a high value. The in-
ertial layer width is about 28 km whereas the
viscous sublayer width varies from 40 km to
15 km. Therefore, we expect that the pro-
cesses are mostly nonlinear. Since we are
interested in the mean states of the circu-
lation, when possible, we performed six year
averages of the fields after a statistical steady
state has been reached. This period is lim-
ited by computer resources. It is a bit short
since six years represent only twice the time
for a Rossby wave to cross the basin. How-
ever, we do not believe that these results
would significantly differ for longer averag-
ing period.

We first compare the results from the C-
grid FD model using the promising 6-( stress
tensor formulation and the enstrophy con-
serving scheme (the B combination of Sec-
tion 4.2.2) with those of the C-grid using
the same advective scheme and the conven-
tional stress tensor formulation (the A com-
bination of Section 4.2.2). Figure 5.3 shows
the elevation fields after a 3 year spin-up for
v = 100 m?s~!'. The circulation of the B
combination is much more inertial than the
circulation of the A combination. Further-
more (but not shown), the vorticity fields are
very noisy in both cases. The B combination
run is stopped shortly after the third year
of simulation because of the depletion of the
water column along the boundaries (h < 0).
Figure 5.4 shows the total energy for both
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combinations and the SE model. We con-
sider the SE results to be the “truth”. We
note that the A combination is too dissipa-
tive and that the B combination is not dis-
sipative enough. The A combination is for
this geometry the combination closest to the
SE results. That the B combination is not
dissipative enough can be related to the fact
that this particular configuration of the C-
grid model specifies the vorticity to be zero
at the wall and therefore, does not take into
account the influence of the radius of curva-
ture. Therefore, although the B combination
was successful in the presence of steps in a
rectangular geometry (where free-slip implies
¢ = 0), this combination is no longer success-
ful in the general case of an irregular geom-
etry where the vorticity can be non-zero at
the walls.

A better way to implement the boundary
condition in the FD model might be to take
into account the curvature of the boundary,
as we do in the SE model. This would re-
quire computing for each velocity node close
to the boundary a series of coefficients asso-
ciated to nearby velocity points in order to
extrapolate the normal derivative of the tan-
gential velocity along the wall (i.e., a general-
ization of the off-centered two point operator
used in Section 2.2.2 for enforcing free-slip
along straight walls.) The C-grid however
does not easily allow for such an implementa-
tion. One limitation comes from the fact that
the velocity components are not discretized
at the same location. This implies interpola-
tions back and forth from the global coordi-
nates to the local curvilinear coordinates of
the components of velocity. This sort of two-
way interpolation is damaging to the overall
accuracy. Leakage of mass from the com-
putational domain is also a possibility that
could affect the accuracy.

We therefore need a model which repre-
sents more accurately the effects of the walls.
The SE model seems to be a good candidate.
A second order FE model, which satisfies the
LBB stability condition and which is based
on the Eulerian time description, may be suc-
cessful in this application as well. However,
from Chapter 3, the SE model would offer a
robust and faster convergence with increas-
ing resolution at a more reasonable cost.
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Figure 5.3: Elevation fields in the Geometry
V for the C-grid model after 3 years of spin-
up. On top, the A Combination, at bottom,
the B combination.
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Figure 5.4: Total energy during spin-up for
the A and B combinations of the FD C-
grid model and for the SE model at n, = 5
(SPOC 5) in Geometry V. v = 100 m?s~.
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v = 100m?2-s 2

R, =35
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Figure 5.5: Mean elevation fields for the five geometries using the SE model. When no
steady state could be reached because the solution jumps to the high energetic branch, an

"X’ is drawn instead.
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Figure 5.5 continued.
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5.3 Results

5.3.1 General Results for all Ge-

ometries

In Figure 5.5, we show the different statisti-
cal mean circulations obtained in the five at-
tempted geometries. An “X” marks when a
statistical mean could not be reached. Such
is the case when the solution jumps to the
high energy branch. When this occurs, the
sea level tilt implied through geostrophic bal-
ance by the unreasonably strong currents
quickly leads to zero layer thickness, at which
point the integration is halted. This happens
for the intermediate and high R, in the Ge-
ometry I and II and for high R, in Geome-
tries ITI and ITV. We achieve a reasonable sta-
tistical mean for all considered R, in Geome-
try V. As the Reynolds number is increased,
the recirculation tends to move eastward and
northward and strengthens. In Geometry V,
the recirculation is nearly round, whereas, it
is more elongated for the other geometries.
The other interesting point to note in Ge-
ometry V is related to the position of the
recirculation relative to the bumps. Between
R, = 0.5 and R, = 1.2, the recirculation
strengthens, but is somewhat trapped be-
tween Bumps 2-3. However, at R, = 3.5, it
jumps to the next indentation (Bumps 1-2;
see labeling in Figure 5.2). The general re-
sult is therefore that the presence of bumps
along the coastline inhibits and retards the
jump to the high energy branch for the Munk
problem with free-slip boundary condition.
However, the radius of curvature of the coast-
line has to be fairly small (i.e., smaller than
the radius of deformation) in order to achieve
reasonable circulations under high Reynolds
numbers.

What is of interest is the vorticity struc-
ture for all these geometries. Figure 5.6
shows the relative vorticity field for Geom-
etry IV and V and for different Reynolds
numbers. One general characteristic is that
these fields are less smooth than those for
the stream function or the elevation field.
This relates to the fact that the vorticity
corresponds to the second order derivatives
of the stream function. The vorticity field
is therefore noisier and more difficult to re-
solve. Nonetheless, the results from the SE

model are very encouraging when compared
to those obtained from finite element mod-
els for which the vorticity fields are gener-
ally much noisier. One basic feature is that
the vorticity approximates the form of a pos-
itive Dirac delta function close to the tip of
the bumps. Therefore, dynamical processes
close to the tip are rather complex, irregular
and difficult to resolve using a high order for-
mulation. However, the use of a discontinu-
ous SE formulation seems to be of some help
in resolving these irregularities by not prop-
agating them to neighboring elements. The
largest peaks are observed where the velocity
is the largest. The magnitude of these peaks
ranges between 1075 and 10~*s~!. Where
the magnitude of these peaks goes beyond
10~°, a tail of positive vorticity forms down-
stream of the peaks. Hence, the excess of
positive vorticity is advectively transported
downstream. Of course, these peaks increase
the local gradient of vorticity pointing out-
ward. They are therefore directly related
to the mechanism which balances the vor-
ticity budget and limits the size of the recir-
culation. Furthermore, we note that a pos-
itive vorticity wall surrounds the recircula-
tion zone. This wall is consistent with the
presence of a region of low velocity outside
the recirculation zone (i.e., a region of strong
shear). We note also that, for Geometry V
and R, = 3.5, a thin filament of large neg-
ative vorticity is located near the western
boundary. An important remark concerns
the Rossby number, R, in the presence of
bumps. By measuring the ratio {/ fy, we note
that R, is above 0.1 for Geometry III and
reaches about unity for Geometry V. As pre-
dicted, R, can be fairly large in the presence
of bumps which invalidates the QG approxi-
mation.

We also show the power input (the rate of
energy put in by the wind), P, in Figure 5.7.
P describes how the circulation adjusts to
the wind pattern in order to minimize its en-
ergy. In general, it shows that the increase in
P is much less than that in R,. This means
that the circulation adjusts in such a way
that reducing v by a factor of two does not
lead to a doubling of P. It would be interest-
ing to verify if some simple scaling arguments
reproduce this result. However, it is difficult
to derive a scaling for P since it cannot be
estimated on boundary layer considerations
alone but requires also the knowledge of the
interior circulation. The figure shows that
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v = 700m?2-s2 v = 300m?-s2 v = 100m?2-s~2
R.=0.5 R, =12 R, =35

Figure 5.6: Mean vorticity field for the Geometries IV and V using the SE model. When
no steady state could be reached because the solution jumps to the high energetic branch,
an 'X’ is draw instead. The influence of the bumps is clearly seen by the abrupt jump in
the vorticity field.
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the rate of increase is larger for the regu-
lar geometry than for the irregular geome-
tries. In fact, the rate of increase is rather
similar for the two irregular geometries, al-
though there is a general shift toward lower
values of P as the bumps grow in size. In con-
trast with results in double gyre experiments
(Scott and Straub, 1998) where P tends to
decrease with increasing R, the single gyre
circulations tend to have difficulties in mini-
mizing P. This stems for the single-gyre cir-
culation being to stable. Under the double-
gyre wind forcing, the recirculation is usually
highly unstable and counter-gyres develop
above a certain R, (the four gyres structure
observed by Greatbatch and Nadiga, 2000;
also visible in Scott and Straub, 1998).
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Figure 5.7: Power input by the wind using
the mean fields with respect to the boundary
Reynolds number.

Role of the Transients for Ge-
ometry V at High Reynolds
Number

5.3.2

We now focus on the results of the high
Reynolds number, R, = 3.5, and Geometry
V. In particular, we are interested in the role
of the transients in achieving a steady state.
One way to investigate the role of the tran-
sients is to plot maps of the standard devia-
tion for the elevation. Figure 5.8 reveals that
a belt of strong anomalies exist south of the
recirculation. This belt extends northward
to Bump 16 and 15, and westward close to
Bump 5 where it reaches a maximum. The

western part of the recirculation is also a lo-
cal maximum of the deviation. It is along
this belt that we observe strong eddies going
around the recirculation and moving west-
ward. We can further refine this kind of anal-
ysis by generating the same kind of maps but
for selected frequencies.

Figure 5.9 reveals the activity of the ed-
dies of period over 200 days. This figure is
very similar to Figure 5.8. It reveals that the
main contribution to the standard deviation
comes from the slow modes. The maximum
is located in the eddy-belt as previously in-
troduced, south-east of the recirculation with
another but slightly weaker maximum close
to the western boundaries. That the eddies
tends to intensify in proximity of the recir-
culation and not at the boundary probably
means that they strongly interact with the
recirculation.

Figure 5.10 shows standard deviations for
periods between 17 days and 200 days. By
isolating these periods, we hope to emphasize
the influence of small eddies. A strong sig-
nal is visible south-west of the recirculation
near Bump 5. It may be due to larger eddies
and Rossby waves interacting with the west-
ern boundary and bouncing back at shorter
wavelengths. The other noticeable point is
that the western part of the recirculation
is mainly active in this band of frequencies.
Consistent with these findings, we noted that
weak eddies of scale above the radius of de-
formation are produced on the southern flank
of eastern bumps. The trajectory of these
eddies instead of being simply westward is
actually more to the south-west in the ab-
sence of strong currents. The eddies seem to
originate from large shift of the elevation in
interaction with the bumps. The strongest
eddies originate from this mechanism but at
higher latitudes. There, they interact with
the recirculation and intensify.

Finally, Figure 5.11 shows the standard de-
viation for periods between 0.6 and 17 days.
This figure mainly shows the inertial grav-
ity and Kelvin waves. The maximum stan-
dard deviation for this figure is ten times
smaller than the mean standard deviation
of Fig. 5.8. Of interest is to note the spa-
tial patterns of the Kelvin waves along the
boundaries. The across-stream length scale
tends to decrease near the bump tips, and
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Figure 5.10: Mean standard deviation of the
elevation for frequencies with period between
17 and 200 days.

Figure 5.8: Mean standard deviation of the
elevation.

Figure 5.9: Mean standard deviation of the

Figure 5.11: Mean standard deviation of the
elevation for frequencies with period above

elevation for frequencies with period between
200 days. .6 and 17 days.
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decrease between bumps. This is evidence
that the Kelvin waves are distorted by the
presence of the bumps. The “packing” it-
self varies along the boundaries of the basin.
The packing is loose in the eastern part of
the basin and very severe in the western part,
especially at Bump 1 and 2. The packing is
then less and less severe as the Kelvin waves
move anti-clockwise away from the recircula-
tion. These variations in the packing of the
Kelvin waves is related to the strength of the
boundary currents. These currents are very
strong near the recirculation, weaker away
and absent in the eastern part of the basin.
Figure 5.11 shows also two other interesting
regions. One is the edge of the recirculation
in the interior of the basin, where the iner-
tial currents separate from the boundaries.
There, the standard deviation peaks close to
Bump 1 and sheds a tail along the edge of the
recirculation. Presumably, because of the
strong inertial currents, the Rossby number
is large in this region and the inertial cur-
rents are slightly geostrophically unbalanced
and produce inertial-gravity waves. A second
region of interest is between Bump 1 and 2.
There, the pattern due to the Kelvin waves is
distorted because of the separation from the
west flank of Bump 1. A reasonable explana-
tion is that the Kelvin waves are disrupted
by the encounter with the strong inertial cur-
rents of the recirculation and generate other
gravity waves at Bump 1.

Transients may be essential in assuring
lower energy levels by transferring the energy
down-scale. This down-scale transfer can
happen in two ways: either the eddies trans-
fer the energy to inertial-gravity waves by in-
teractions along the western walls, or in the
recirculation zone through geostrophic im-
balances. These small-scale inertial-gravity
waves then dissipate the energy if their scale
is close to the dissipative range. The recir-
culation location appears to be the most im-
portant from a plot of the divergence field
(not shown). An intense dipole is present
right at Bump 2, in front of the recirculation
zone. The divergence may be related to a
strong forcing of the Kelvin waves observed
in Figure 5.11. The Kelvin waves are char-
acterized by a mode two wave (two crests,
two troughs around the basin) with period
8.3 days (Fig 5.12). The fact that these
Kelvin waves correspond to a free mode of os-
cillation and are very regular both spatially
and temporally suggests a resonant interac-
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tion?. Some irregularities are visible, though.
These arise from interactions with the tip of
the bumps along the western boundary. In
order to emphasize the nonlinear energetic
transfer to the Kelvin waves and possible vis-
cous dissipative effects, we analyze the am-
plitude of the Kelvin waves as they propagate
along the boundaries.

Since the amplitude of the Kelvin waves is
dependent on the Coriolis parameter, f, we
need to first separate the Coriolis effect from
production or dissipative effects in order to
make a clear diagnostic on these waves. To
this aim, we can use the following rule (see
also Gill, 1982, p. 379-380): For a Kelvin
wave propagating along a southern bound-
ary, we have

n = hoe Y/Lro F (g — ct)
— gho ,—y/Lro —
u=20c=Y/Lro (3 — ct)

v=20,

(5.11)

where the southern boundary is located at
y = 0 km, ¢ = v/gh and Lg, is the radius
of deformation given by Lp, = ¢/f. The
linearized total energy of this Kelvin wave
is, after simplification:

te(z,y,t) = gh*/2 + Hu?/2 =

5.12
ghF?(z — ct)e™ 2/ Fro (5.12)

After integration over space, the energy be-
comes

TE = //te(x,y,t) dxdy =

; (5.13)
gh2=Ee /F2(:1: —ct)dx

0 9

Now, we assume that the same Kelvin wave
moves along a meridional wall conserving
TE, with no change in structure ([ F2dz is
now a constant independent of the orienta-
tion of the wall) but a change in amplitude
and in the radius of deformation, Lg,. As

2The regular temporal and spatial structure of the
Kelvin waves still eludes us. It is possible that non-
linear interactions occur in a band of frequencies that
covers the frequency of these free-mode Kelvin waves.
At this frequency, the waves may be so resonant that
they can pick up a very faint signal.
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Lp, changes with latitude, hy changes in-
versely as the square root of Lg, for the to-
tal energy to be conserved. And as Lg, is
inversely proportional to f, hgy is therefore
proportional to the square root of f. Thus,
we can correct the amplitude of the Kelvin
waves for the beta effect by using the rela-
tion:

o=
" Vo + By

The elevations along the boundaries were
first corrected with respect to change in the
envelope (passage of an eddy or global shift
of the circulation strength) using a 17 day
smoother. From this time series, hy was com-
puted using the difference of maximum and
the minimum elevation observed at one loca-
tion during a 17 day time window.

(5.14)

Figure 5.13 shows both hy and hj along
the boundaries as the averaged value over the
last 6 years of simulation. Along the western
boundary, as the Kelvin waves pass the tip
of the bumps, they encounter counter cur-
rents. The strength of these currents is not
strong enough to stop the Kelvin waves, but
does slow them and induces the peaks of Fig-
ure 5.13 and the packing in Figure 5.11. It
is also apparent that there is a continuous
decline in the amplitude of the Kelvin waves
as they leave the western region of produc-
tion and move anti-clockwise. This decline
is probably due to viscous effects which are
large for the scale of the width of the Kelvin
wave. There is apparent but weak modifica-
tion of the waves as they passed the tip of the
eastern bumps where we measured radius of
curvature of 18 km which are consistent with
Figure 5.11. Therefore, the Kelvin waves
tend to follow the coastline even when the
radius of curvature is below the radius of de-
formation. The Kelvin waves cannot reflect
on the eastern wall as Rossby waves because
their frequency is too high for Rossby waves
to exist. There is, however, the possibility
that Kelvin waves generate inertial-gravity
waves along the eastern boundary, as they go
around the bumps and diffract some energy.
For the eddy viscosity used and taking a ve-
locity of 3 cm/s along the eastern boundaries,
features below 3 km lie in the dissipative
range. Therefore, these Kelvin waves must
be largely dissipative themselves, directly or
by further cascade to inertial gravity waves.
Thus, the Kelvin waves provide one mecha-
nism for the dissipation of the energy at this
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particular Reynolds number (not necessarily
true at higher R,).

Of interest is to note that the amplitude of
the Kelvin waves is not constant during the
simulation (Fig. 5.14). In fact, we note that
the amplitude is anti-correlated to the total
energy (Fig. 5.15), the amplitude being high-
est when the total energy is the lowest. One
explanation may be that, as the amplitude
of the Kelvin modes grows, more energy can
be dissipated via these waves. If the ampli-
tude of the Kelvin waves grows, the reason
lies in stronger interactions with the recircu-
lation. These interactions may be related to
the strong instabilities of the recirculation.
It is difficult to explain why there should
be a 180° phase lag between the energy in
the Kelvin waves and the total energy, which
represents mostly the geostrophic modes. A
180° phase lag would appear if all the en-
ergy lost in the geostrophic modes went into
the Kelvin waves with very weak dissipation.
However, Figure 5.13 implies nearly a 70%
drop in amplitude for a Kelvin wave going
along the perimeter of the basin (in 20 days).
This suggests a very strong dissipation, in-
consistent with the long period variations of
Figures 5.14 and 5.15 (about 500 to 1000
days).

The maps of the standard deviation of the
elevation field reveals that the recirculation
zone is very active. Transient geostrophic ed-
dies tend to amplify in the proximity of the
recirculation. Energy leaks from the recir-
culation to these eddies and to the Kelvin
waves. In order to emphasize the instabili-
ties in the circulation zone, Figure 5.16 shows
a sequence of snapshots taken of the relative
vorticity every 20 days between day 5705 and
day 5985. This particular sequence was cho-
sen because it shows rapid change of the re-
circulation zone itself. For instance, on days
5705, 5785 and 5885, the recirculation mini-
mum has shifted to the west and is weaker,
whereas the recirculation is the strongest for
days 5745, 5825 and 5925 after the mini-
mum has shifted back to the east, close to
the position of the edge of strong positive
vorticity. Consistent with the eastward shift
and the intensification of the recirculation,
a tail of positive vorticity is shed along its
edge. Rapid changes in the recirculation pat-
terns mean that particles are not trapped in-
definitely inside but escape regularly. This
mechanism may prevent the formation of a
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Figure 5.16: Instantaneous vorticity field in the vicinity of the recirculation. We focus of the
period between 5705 and and 5925 days in a region limited in the south by y = —250 km,

in the west by z = —200 km and in the east by x = 200 km. Bumps 1 and 16 are visible
along the northern boundary.
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Figure 5.12: Hovmoller diagram of the fil-
tered elevation with respect to time and lo-
cation along the boundary. The elevation is
given in meters. Note the strong regularity
of the Kelvin waves. They are characterized
by a mode 2 wave with period 8.3 days.

Fofonoff gyre.

From a vorticity balance point of view, the
transients transport the excess of vorticity
produced in the interior to the walls. How-
ever, to be effective, such a transport needs
to act across the streamlines. In a steady
state, the vorticity balance across a stream-
line is

/
(5.15)

The transport of the mean vorticity by the
mean currents does not contribute to this
balance(d - n = 0), therefore (5.15) simpli-
fies to

j{;-dl—l-u]{% dz:+fﬁ-ndl,
h on

(5.16)
where vorticity transport by eddies and vis-

cous flux balance the wind input.

h

In order to illustrate the eddy transport,
Figure 5.17 shows three sub-figures. The

z-dl+u7§ g—g dl = f(6+f)ﬁ-ndl+fﬁ-n dl o
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Figure 5.13: Amplitude of the Kelvin wave
in meters along the boundary averaged over
6 years. The solid line represents the original
amplitude, hg, and the dashed line represents
the corrected amplitude, hy, with respect to
the Coriolis parameter.
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Figure 5.14: Time series of the amplitude
of the oscillations at (x=500 km, y=0 km).
The time series is for instance plotted in Fig-
ure 5.12 all along the boundary. From this
series at the specified location, the maximum
and minimum were taken in a 52-point run-
ning window (approximated 17 days). The
difference of these two quantities divided by
two yields the amplitude at a particular time.
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Figure 5.15: Total energy for the last 6 years
of simulation. Note that the amplitude of
the Kelvin wave of Figure 5.14 tend to be
anti-correlated with the total energy.

first is the curl of the wind input over the

domain (k - V X %), the second is the di-
vergence of the eddy transport of vorticity

(V-¢'d’) and the third is a vector-plot of the
eddy transport normal to the mean stream-
lines as to emphasize the across-streamline
component. The first two figures emphasize
the local sources and sinks to the vorticity
budget. The darker regions in the first sub-
figure are stronger sinks of vorticity and the
dark (light) regions in the second sub-figures
are sources (sinks) of vorticity. In the first
sub-figure, it is apparent that most of the
domain is a sink of vorticity, consistent with
the idea of a single-gyre forcing. However,
due to the strong gradient present in the el-
evation field, the southern part of the recir-
culation is a very weak source of vorticity
whereas the northern part and more specifi-
cally the regions surrounding Bump 1 and 2
are strong sinks of vorticity. The divergence
of the eddy transport of vorticity (the second
sub-figure) shows much finer scales and more
noise. The basic features of this sub-figure
are the presence of two arcs along the east-
ern and southern edges of the recirculations
of opposite signs. The interior arc is a region
of convergence of the eddy transport (source
of vorticity) whereas the exterior arc is a re-
gion of divergence (sink). Regions close to
Bump 3, 4 and 5 are mostly sources of vortic-
ity whereas the regions between bumps tend
to be weak sinks.
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The maximum magnitude of the eddy
transport is comparable to the value of the
wind input. Three active regions are evident
on the third sub-figure. The first is the re-
circulation zone, the second is directly south-
west of this and the last region is southeast of
the recirculation. The transport in the recir-
culation zone is outward-oriented along the
western edge and inward along the southern
and parts of the eastern edges. On this sub-
figure, the two arcs of convergence (source of
vorticity) and divergence (sink) are recogniz-
able. The net forcing over the recirculation
region appears to be weakly positive. This
strong activity along the edge of the recircu-
lation is another evidence that the transients
are important in preventing the recirculation
from growing and filling the entire domain,
as it does when the solution jumps to the
high energetic branch.

Southwest of the recirculation (the second
region), the transport is mainly westward
and southward oriented. Southeast of the
recirculation (the third region), it is mainly
eastward and southward oriented with an ad-
ditional northward component closer to the
eastern wall. The two other regions empha-
size the eddy activity in the eddy belt, as de-
fined above. Since westward propagating ed-
dies with negative (positive) relative vortic-
ity tend to migrate north (south), it follows
that the eddy vorticity transport should be
southward. This is consistent with the sub-
figure which shows a main southward orien-
tation. As the belt tends to surround the re-
circulation, the eddies propagate first to the
southwest and then to the west. The eddy
vorticity transport seems to adjust to this
and tend to be oriented first to the south-
east and then to the south, following a main
leftward orientation with respect to the ed-
dies.

From this analysis, it appears that the role
of the mean vorticity transport (not shown)
is not to be underestimated since the eddy
transport seems to mainly remove the excess
of vorticity from inner streamlines to outer
streamlines. Close to the western boundary,
the eddy transport shows no particular east-
ward orientation (which would be the signa-
ture of transport into the interior of positive
vorticity produced at the wall). The mean
vorticity transport is therefore still neces-
sary to bring the excess of vorticity to the
walls. This is done through several stream-
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lines lying in the viscous sublayer, in partic-
ular around Bump-2, where the relative vor-
ticity is at its maximum.

5.4 Scale Analysis and Dis-
cussion

In order to interpret the large scale and
steady characteristics of the Munk circula-
tion of the previous sections, we propose to
develop some scaling arguments and compare
these with the numerical results. One ap-
proach is to derive a criterion based on vor-
ticity budgets (following Pedlosky) under the
free-slip boundary condition for steady so-
lutions which allows for curved boundaries.
For straight walls, the relative vorticity is
zero along the boundary. For a strong in-
ertial layer in which we neglect viscous ef-
fects, we know that the absolute vorticity is
conserved along a parcel trajectory (see Fig-
ure 5.18). Let us consider the conservation
of absolute vorticity for simplicity. This one
is (+ f = fo—Ly/2 in the southern part of
the domain (upstream of the inertial layer)
where the relative vorticity is zero. Since
absolute vorticity is conserved in the iner-
tial layer, it is reasonable to imagine that
the minimum absolute vorticity is such that
¢+ fo+BLy/2 = fo — BL,/2 in the north-
ern part of the domain (downstream of the
inertial layer). Therefore, the minimum rel-
ative vorticity is ( = —3L,. Hence, in order
to have an idea of the magnitude of the vis-
cous flux of vorticity out of the domain, we
only need to estimate the width of the vis-
cous sublayer in the presence of the recircula-
tion. One limitation, though, of this approx-
imation is that the recirculation is formed
of closed contours of both potential vorticity
and the streamfunction. Hence, to the extent
that particles remain trapped in the recircu-
lation for long periods, wind forcing can lead
to even lower values of ¢ here. However, from
experience, the minimum in the recirculation
zone is usually superior to (less negative) or
about the number we gave (—f3L,), as long
as the recirculation zone is confined to the
northwestern part of the gyre. As soon as
this zone reaches the eastern walls (i.e., with
increased R,), it forms a Fofonoff-type gyre
that fills the whole basin, and for which the
vorticity is much lower. Using the vorticity

(b)

Figure 5.17: (a) Local wind input to the vor-
ticity in Geometry V. (b) Local divergence
of the eddy transport of vorticity in Geom-
etry V computed using the last 6 years of
simulation. (c) Vector plot of the eddy trans-
port of vorticity normal to the streamlines in
Geometry V computed using the last 6 years
of simulation. The elevation field is plotted
as an analog of the streamlines on each sub-
figures.
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()

Figure 5.17 continued

Figure 5.18: The region in grey represents
where the absolute vorticity is approximately
conserved. It encloses the inertial layer along
the western boundary and the recirculation
in the north-western corner.

budget given in (5.1) and the viscous sub-
layer thickness, Lo, as the scale at which
the vorticity varies in the boundary layer, we
derive the simple criterion for a circulation in
straight walls in the presence of a strong re-
circulation (Re ~ 1):

BL 7{1’
lov + ¢ —-dl~0
L&, h

where [, is the length of the recirculation.
The second term, the wind input, in the vor-
ticity balance is easy to determine. It varies
with h; however, from experience, we can
consider h ~ H. A first scaling for [, can be
obtained from (5.17) after substituting (5.2-

5.5):
le ~ VReL . (5.18)
For R, = 0.5, we obtain [, = 710 km, which

is reasonably close to what is observed in Fig-
ure 5.5.

(5.17)

This scaling can be compared to Ped-
losky’s (1996, pages 85-86). Pedlosky eval-
uates the recirculation length scale using
three equalities. The first one comes from
the equality in the momentum equations be-
tween the advection terms and the diffusion
terms in the viscous sublayer in the presence
of the recirculation:

v
Lo=y/—le
Pe

where [, is the thickness of the sublayer and
1 is the transport in the recirculation. The
second equality comes from the transport
in the sublayer being equal to the Sverdrup
transport and from the velocity in the sub-
layer being equivalent to the velocity at the
edge of the recirculation:

VsuL _ Pe
Ly le
The third equality comes from the vorticity
input by the wind in the interior of the ocean

being equal to the viscous flux of vorticity
across the recirculation edge

v
1212

These three combined equations allow one to
derive one equation for /.:

12 — ngLz
[ 52y2

(5.19)

(5.20)

= Vs, L? . (5.21)

(5.22)



CHAPTER 5. SINGLE GYRE CIRCULATION IN IRREGULAR DOMAINS 83

which can be simplified using (5.2-5.5) to

53
le=—

= 5 L=RcL. (5.23)
M

Pedlosky’s scaling of I, however implies an
inconsistent definition of the viscous bound-
ary layer thickness along the recirculation.
The thickness for the viscous sublayer can
be obtained from (5.19-5.23):

vie v

"L=1, = —% = Ry[L——
M Vo L ““ Vg, L

(5.24)

Using again (5.2-5.5), this equation becomes

53
Shy = Reé—ﬂg =07 . (5.25)
I
Hence, the viscous sublayer thickness is no
longer dependent on v. This seems counter-
intuitive: for high R,, one expects 8}, << dr.
Therefore, we will continue to use our own
estimate of &', as given in (5.5) and we will
give the equivalent result using 0%, in the
presence of a recirculation as given by Ped-
losky. The true scaling might be in between
these two values. Nonetheless, in both cases,
the behavior of [ with increasing Reynolds
number is roughly the same. The recircula-
tion length quickly increases with increasing
Reynolds number and the Sverdrup interior
can no longer be sustained for R, > 1.

Now, in the presence of a curved coastline,
(5.17) is modified to account for the posi-
tive vorticity produced at the wall. Since the
recirculation has closed contours of stream-
lines, all the Sverdrup transport goes be-
tween the recirculation and the wall. We as-
sume this region to be the viscous sublayer.
Therefore, the volume transport through the
sublayer is:

L&y v* ~ LVg, (5.26)
where v* is the velocity in the viscous sub-
layer (this is actually identical to Eq. 5.20)).
This yields

v* ~ 67\/R.SL?

for the scaling of v*. Using (5.26), we esti-
mated v* to be of the order of 0.84 m/s for
R, = 3.5. We now need to estimate the vor-
ticity produced at the wall. This is of the

(5.27)

order of v*/Rs as given by (5.7). Let us as-
sume that the production of positive vortic-
ity is valid within half a wavelength of the
curvy coastline and that no vorticity is pro-
duced in the other half. The second term in
(5.1) becomes

¢
—dl ~
on

le BL | l.v*/Rs+BL
2 Lo, 2 Lo,

1 o*
2LR, )

(5.28)

le
5 (ﬁ *

Therefore, in the presence of curved coast-
lines, the relation (5.17) becomes:

IBVS’UL2
v 1 v*
— /6 + = >
Oy ( 2 LR,
Using the same values as above, 8%, = 0.040

at R, = 0.5 and R; = 10 km, this relation
yields a length of [, = 340 km.

lo ~

(5.29)

There are two regimes, depending on the
magnitude of R;, the radius of curvature of
the coastline; one at low curvature corre-
sponding to (5.18) and the second at high
curvature that we want to investigate. Let us
consider now the condition under which the
recirculation is controlled by the curvature of
the coastline. This condition corresponds to
the second term being larger than the first
term in the denominator of (5.29):

10*
L<=-—
R, <2ﬁ

and after substituting (5.5,5.26), we obtain

(5.30)

R 1
2 < —\/R.r . (5.31)
L 2

Hence, the transition depends on the

Reynolds number. As R, increases, the ra-
dius of curvature can increase for the second
regime to persist, implying less curvy coast-
lines. For the second regime, the length of
the recirculation is governed by the vortic-
ity produced at the wall and, substituting
(5.5,5.26), is scaled as

(5.32)



CHAPTER 5. SINGLE GYRE CIRCULATION IN IRREGULAR DOMAINS

Hence, the length of the recirculation in
curved geometries is no longer dependent on
the eddy-viscosity, v. In other words, the
Reynolds number dependence in [, disap-
pears. This result is valid as long as the cur-
vature satisfies (5.31).

The weakest point in this argument is
probably the estimate of the thickness of the
viscous sublayer (0%,) and the velocity in the
sublayer (v*) in the presence of the recir-
culation. Using the estimation of Pedlosky,
84y = 01, we would have found

I~ 2 /R,
o1

By this estimation, [. is still dependent on
the Reynolds number, but the dependence
would be somewhat weaker when compared
to regular domains (Eq 5.18 or 5.23). More-
over, in the presence of curved coastline, it is
not clear what ¢, becomes. The viscous sub-
layer might be squeezed between the recircu-
lation and the bumps and therefore, the nor-
mal derivative of the vorticity might be in-
creased, which favors smaller recirculations.
It is also possible that the viscous sublayer
is not squeezed but that some streamlines of
the recirculation may lie within it. In such a
case, a proper definition of the viscous sub-
layer becomes difficult. The second point
relates to the form that the vorticity takes
around the bumps, which we assume to be
constant over a half wavelength of the curvy
coastline. As we noted in the numerical re-
sults, the vorticity actually behaves quite sin-
gularly at the tip of bumps. An additional
problem relates to the length of the perime-
ter which increases with increasing number
of bumps and with increasing amplitude of
these bumps. This would again favor lower
values for [.. Lastly, these scaling arguments
were based on the assumption that the action
of the transient eddies are negligible, which
may not be the case for sufficiently high R,.

(5.33)

We now compare the predictions from
our scaling argument about the recirculation
length scale to Figure 5.5. We note that, at
R, = 0.5, the recirculation changes in char-
acter between Geometry II and III. Between
these two geometries, the strength of the re-
circulation weakens and its length decreases.
Moreover, for Geometry V, the length of the
recirculation does not increase significantly
with increasing R, (300 km to 350 km). The
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latter observation is consistent with (5.32).
Therefore, the circulation seems to be con-
trolled by the curvature of the geometry be-
tween Geometry IT and I11. At R, = 0.5, the
inequality (5.31) is however only satisfied for
Geometry V. Moreover, for a fixed radius of
curvature, (5.31) should be satisfied at a spe-
cific R, and the circulation in that particular
geometry should be controlled by the radius
of curvature beyond that specific R.. How-
ever, we observe the opposite. For example,
as R, increases, the length of the recircula-
tions for Geometry IV increases slowly but
then jumps to the energetically high branch.
The criterion (5.31) may not be very repre-
sentative when the solution tends to jump to
the energetically high branch with increasing
R.. Nonetheless, the formula derived for [,
seems to yield a relatively good prediction
when the curvature is large enough (Geome-
try V).
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Figure 5.19: Maximum of the mean elevation
for the three geometries. The maximum ele-
vation is a good proxy for the strength of the
recirculation.

Now focusing on results from Geometries I,
IV and V, we derive a predictive law for the
strength of the recirculation based on pre-
vious scalings. The Geometries IV and V
are chosen because they show the most ro-
bust sign that their circulation is controlled
by the curvature. The strength of the gyre is
given by the maximum transport through the
basin (dominated by the recirculation). Let
us define the strength of the recirculation as
the volume transport through it. The trans-
port is defined as the mean velocity in the
recirculation multiplied by its cross-section
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length. Let us assume that the magnitudes
of v* and [, are sufficient to characterize this
transport. From (5.18) and (5.27), the maxi-
mum transport in regular basins is then given
by

Ymaz ~ Ho*l, ~ RO BLPH (5.34)

and in irregular basins by, substituting (5.27)
and (5.32)

7»bmaa: ~ vV RBBL2HR .

Therefore the strength should be sensitive to
the presence of the bumps. A good proxy
for the strength of the gyre is the maximum
elevation observed in the basin (because of
the geostrophic approximation prevailing in
most of the domain). Figure 5.19 shows the
maximum elevation with respect to R.. It
appears that the strength of the gyre is de-
pendent on the form of the geometry. There
is a clear shift in the strength of the gyre
between Geometries I and IV. Moreover, the
slope (the power relation between h,, and R,
or the slope coefficient in a log-log plot) is
close to unity for the regular geometry (1.06),
whereas it is about 0.5 for Geometry IV. At
R. = 0.5, the strength is identical for Ge-
ometry IV and V, but the slope is somewhat
less for Geometry V. These results seem to
follow (5.34) and (5.35), and the scaling for
the sublayer thickness in the presence of the
recirculation seems therefore to be closer to
(5.5) than to that of Pedlosky.

(5.35)

Another important quantity related to the
strength of the gyre is the kinetic energy
(KE). We plot KE with respect to R,.
Since the strength of the recirculation is de-
pendent on the Reynolds number via v*, the
kinetic energy must depend on the Reynolds
number despite the presence of the indenta-
tions, but at much lower rate compared to
the kinetic energy in regular geometries. By
assuming that, at first order, K F is governed
by the energy in the recirculation, we esti-
mate that in the regular geometry the energy
grows with both the length and the strength
of the recirculation by using (5.18) and (5.27)

KE ~ Hv*?l,2 ~ R?26?3°L°H  (5.36)
whereas it grows only with the strength of
the recirculation in the presence of indenta-
tions, substituting (5.27) and (5.32)

KE ~ Hv*%,> ~ RB?LHR? . (5.37)
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Figure 5.20: Kinetic energy of the mean
fields with respect to the boundary Reynolds
number. One point has been plotted on
the high energy branch for the first geom-
etry. This one was evaluated using a FD-QG
model in a rectangular domain and is plotted
only for giving the order of the jump.

Figure 5.20 shows the increase in the energy
of the mean fields for Geometries I, IV and
V. The presence of a wavy perturbation of
the circular geometry retards the jump of
the solution to the high energy branch and
the increase with the Reynolds number is
much slower in the presence of indentations
along the coastline. Before the solution in
the intermediate geometry jumps to the high
branch, it is noteworthy that the slope for
log KE with respect to log R, for the two
irregular geometries, is rather similar. The
slope is 1.7 for Geometry I, and 0.85 for Ge-
ometry IV and 1.0 for V. All actual values for
the slopes are rather close to their expected
values, even though this might be coinciden-
tal.

5.5 Adaptivity

We use the adaptive refinement in order to
check the levels of errors in our previous sim-
ulations. The fact is that large discontinu-
ities develop in the vorticity field between el-
ements close to Bump 1 and 2. These dis-
continuities are located close to the tip of
the bumps and at the edge of the recircu-
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lation. We also noted that some discontinu-
ities are associated with the piecewise bound-
ary parabolas near inflection points along
the coastline where third degree polynomi-
als would be more adequate. We therefore
redesign a mesh with more points along the
western bumps and slightly more in the inte-
rior. On the new mesh, the vorticity field
is indeed improved but further refinement
would be needed to obtain a reasonable vor-
ticity field, especially in proximity of Bump
2 where a strong velocity shear exists. More-
over, strong negative vorticity seems to orig-
inate from Bump 3 and is shed in front of
Bump 2 with dramatic consequences to the
resolution of the vorticity field. This is pos-
sibly connected to two anticyclonic eddies
trapped between Bump 3-4 and 2-3. Starting
from this mesh, we use the adaptive strategy
developed in Section 2.4.3. We have a cer-
tain level of liberty in the choice of the fields
and the parameters controlling the selection
of the elements to be refined. In Section 3.4,
we used the primitive variables for control-
ling the level errors. From a geophysical fluid
perspective, it would be interesting to con-
trol the errors using the vorticity, which is
a one order higher field relative to the ve-
locity. If the latter is correctly resolved, it
should follow that the other fields are also
well resolved. We found that this approach
was reliable by testing the adaptive strategy
in a simpler experiment. From this experi-
ment, we noted that the velocity, elevation
and vorticity fields are indeed well resolved,
and that, for the same parameters );, the
vorticity controlling adaptivity induces one
additional level of refinement. Unfortunately
for Geometry V, we could not afford in terms
of computational cost more than one adap-
tive cycle. Therefore any claim of conver-
gence has to be discarded. After one cycle
(Fig. 5.21), the refined elements are concen-
trated along the tip of Bump 2 and less near
Bump 1. Of course, the refinement has a
cost. The simulation on the refined mesh is
about four times more expensive than that
on the original mesh, due to time-step limi-
tations.

We now compare the two experiments for
the Geometry V and v = 100 m?/s. Fig-
ure 5.22 shows the total (kinetic 4+ poten-
tial) energy for the two experiments. The
refined and original results are rather simi-
lar for the first year, but they depart after-
wards. However, we see the same approxi-
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Figure 5.21: Mesh for the original and the
refined runs.
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mate low frequency (about 1000 day period)
behavior, which is the signature of a Rossby
basin mode. The higher frequencies (small
eddies) may be responsible for the most of
the discrepancy. What is more intriguing is
that the Kelvin wave activity increases sig-
nificantly for the refined experiment. Be-
tween day 4400 and 4800, the amplitude of
the Kelvin wave on both meshes at the same
location is rather similar, with the amplitude
on the refined mesh being slightly larger.
Then, after day 5000, the amplitude on the
refined mesh quickly doubles relative to the
amplitude on the original mesh and this fac-
tor then remains more or less constant. Pre-
sumably, the production of Kelvin waves is
enhanced by the increased resolution in the
region of Bump 2 where Kelvin waves are
generated. As with the original mesh, the
amplitude of the Kelvin waves on the refined
mesh are anti-correlated with the total en-
ergy. However, the increased amplitude of
Kelvin waves on the refined mesh did not
lead to a decrease of the total energy between
the original and refined meshes. This raises
two possibilities. Either the Kelvin waves are
only marginal in the dissipation of the energy
or, more probably, this could be an artifact
of the resolution. On the original mesh, it is
possible that processes located near Bump 2
were too dissipative because of the too coarse
resolution.

The overall structure of the mean eleva-
tion field is rather similar for the original
and refined meshes (Fig. 5.24). Although
not noticeable in Fig. 5.24, an important im-
provement lies in the structure of the eleva-
tion field close to the tip of Bump 1, 2 and
3, where the elevation shows a rather singu-
lar behavior on the original mesh. By con-
trast, the elevation field at the same locations
is much smoother and the amplitude of the
peaks in elevation much less on the refined
mesh. The mean total energy for the refined
mesh tends to be slightly larger than that on
the original mesh, although, due to the rel-
ative short period of observation (6 years),
this may not be significant. Much improve-
ment can be noticed in the mean vorticity
field. The strong peak at Bump 2 is bet-
ter resolved (although the amplitude is not
severely modified), as well as the zone of neg-
ative vorticity near the same bump. This un-
dershoot seems to be real and not an artifact
of the lack of resolution on the original mesh.
Some improvement is also noticeable in the
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interior of the basin, likely due to a slightly
improved resolution on the new mesh in the
interior. The edge of the recirculation would
stand some refinement. However, since the
largest discontinuities in the vorticity field
are close to the tip of the bumps, the mesh
is first refined there. To conclude, we gain,
using the adaptive strategy, improvements
over the complex processes happening close
to the bumps and consequently some im-
provement of the nonlinear interactions and
related energetics (the increased amplitude
of the Kelvin modes). However, there are no
significant changes in the overall mean circu-
lation.
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Figure 5.22: Total energy for the last 6 years
of simulation for the original and refined
meshes. The two curves are very similar for
the first year and then depart slowly from
each other.

5.6 Conclusions

We show applications of a discontinuous
spectral element model to the problem of the
inertial runaway under the free-slip condition
in irregular geometries. We first show that
more traditional numerical methods, such as
the finite difference methods, fail to converge
in irregular domains for the boundary con-
dition under interest. Second, the main re-
sults of this application of a spectral element
model show that, in the presence of irreg-
ular boundaries, the jump to the high en-
ergetic branch is considerably retarded, oc-
curring at a higher boundary layer Reynolds
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Figure 5.23: Amplitude of the fast oscil-
lations at (x=500 km, y=0 km) along the
boundary for the original and refined meshes.

Figure 5.25: Mean vorticity fields for the
original mesh and the refined mesh.

Figure 5.24: Mean elevation fields for the
original mesh and the refined mesh.
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number. The presence of smooth bumps
along the coastline introduces a source of
positive vorticity and thus a source of pro-
duction of eddies through barotropic insta-
bilities. From the point of view of the vor-
ticity budget, positive vorticities along the
walls ease the process of balancing the wind
input with stronger viscous fluxes of vortic-
ity at the walls. Eddies are also important
to the vorticity budget because they trans-
port the vorticity through the inertial layer
to the viscous sublayer where it can be dis-
sipated. However, we noted that the eddies
do not play a large role in the vorticity bud-
get. We also noted the presence of strong
Kelvin waves that may provide a mecha-
nism for transferring energy to smaller scales
and dissipate it. Of course, as the Reynolds
number is increased (and v decreased), these
Kelvin waves are no more sufficient to dissi-
pate the energy. Then, other nonlinear pro-
cesses must come into place, such as triad
interactions developed by Bartello (1995) be-
tween low and fast modes. Of interest is
to note that the main Rossby mode of os-
cillation of the basin contrasts with that in
rectangular geometries where it is usually ob-
served that the main mode of oscillation is a
basin scale Rossby wave of large amplitude
(observable in both QG and SW models).
The weak presence of such a mode in our sim-
ulation may mean that this mode is damped
by the complex geometry of the basin.

The assessment of our scaling arguments
brings up some interesting issues. First, our
scaling arguments are surprisingly close to
the numerical results despite obvious theo-
retical weaknesses. Because those arguments
assumed laminar boundary layers, this im-
plies that production of eddies was insuffi-
cient, not only to invalidate our scaling, but
also to prevent inertial runaway. It is worth
commenting that the double gyre circulation
usually induces many more eddies. In or-
der to get more eddies, the single gyre cir-
culation would require more curved bound-
aries. For instance, it would be interesting
to investigate what sort of equilibrium can
be reached in basins were the boundaries are
so irregular that free-slip flows have no choice
but to separate from the boundaries at each
bump. In such a case, it is however likely
that the assumptions on which the SW equa-
tions are based would be no longer valid.
For instance, the fact that the region around
Bump 2 requires a resolution below 1 km
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implies that the SW assumption is breaking
down. Moreover, the small eddy production
points out to lack of physical processes repre-
sented by the SW models. Baroclinic insta-
bility, for instance, which is a main contrib-
utor to turbulence in both the atmosphere
and the ocean seems to be needed in order
to definitively close the inertial runaway is-
sue in single gyre experiment. In such a
case, we would need to run expensive three-
dimensional baroclinic models. Finally we
demonstrate the use of an adaptive strategy
in ocean modelling. We note however that
the cost of such a method is higher than us-
ing fixed meshes in time (see Section 3.4).
Nonetheless, it provides an automated pro-
cedure for resolving and localizing fronts and
strong nonlinear currents which would other-
wise require tedious manual remeshing. For
instance, we noted that the results from the
adapted mesh yield stronger Kelvin waves,
apparently related to the increased resolu-
tion in the regions of Kelvin wave produc-
tion.



Chapter 6

Conclusions

In this thesis, we were interested in assess-
ing the performance of different numerical
methods for modelling the ocean in complex
geometries. Complex geometries are repre-
sented by step-like walls in the most conven-
tional numerical method used in oceanogra-
phy, namely the finite different (FD) method.
The presence of these steps may be detrimen-
tal to the representation of currents located
along the boundaries, especially the west-
ern return currents if we consider the sim-
ple Munk gyre problem. From this perspec-
tive, finite element (FE) methods and spec-
tral element (SE) methods with their accu-
rate representation of the coastlines may pro-
vide more accurate solutions of the ocean cir-
culation.

In Chapter 3, we compare these differ-
ent numerical methods for a few test prob-
lems. In a rectangular geometry, the FD
method is always more accurate at a given
cost than FE methods using linear basis
functions. However, for a simple analyti-
cal linear solution in a circular domain, we
showed that conventional FD methods tend
to have truncation orders between unity and
two, instead of two. In that case FE meth-
ods provide more accurate solutions at the
same cost than do FD methods. For nonlin-
ear solutions and in a rectangular domain,
all tested FE models showed a bias which
tends to be robust with increasing resolu-
tion. In most finite element models, the
problem is linked to numerical dissipative ef-
fects that were too small to be detected in
the linear test-cases but that were large in
the nonlinear test-case. These dissipative
effects are related to the stability proper-
ties of each of the schemes and how each of
them finds its way around the stability con-
dition. Only one tested FE model satisfies to
the so-called Ladyzhenskaya-Babuska-Brezzi

(LBB) condition for FE models. This model
showed also some signs of over-dissipation
but in that case, the problem was more re-
lated to the use of a semi-Lagrangian treat-
ment of the time discretization of the equa-
tions. Unfortunately, we have not made use
of a FE model satisfying to the LBB condi-
tion with an Eulerian treatment of the equa-
tions. However, we can speculate based on
the results of Chapter 3 that such a model
would not be as cost-effective as the tested
SE model. Nonetheless, the use of a LBB-
complying FE model may prove to be more
appropriate than FD models when spatially
variable mesh capabilities are required, such
as for resolving straits and inlets.

The tested element model shows high or-
der truncation errors for linear and nonlin-
ear test-cases in rectangular and circular do-
mains. In the latter case, we reached a lim-
itation due to our use of piecewise parabo-
las for the description of curved geometries.
To test cost-effectiveness, we compared the
SE and FD models for the nonlinear Munk
problem in a rectangular domain. This test
reveals that the accuracy of the SE method
has to be about 1% of the true solution to be
more effective than the second order C-grid
FD model. However, for nonlinear problems
the SE method presents a decisive advantage
that its accuracy remains more or less iden-
tical in rectangular and generally curved do-
mains whereas that of the finite difference
methods degrades.

Finally, we tested with success an adaptive
mesh strategy in a time-stepping mode. We
designed an automated procedure that esti-
mates the local error and refines the mesh
accordingly in regions of largest errors as the
simulation runs. This was tested for the
Munk gyre problem. We noted that, when
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the required accuracy was high enough, most
of the refinement goes into resolving the ini-
tial Kelvin waves which is excited by the
onset of the wind and propagate along the
boundary. After this initial transient pro-
cess comes to rest, the mesh is automatically
derefined along the boundary. In terms of
cost, the adaptive procedure proves to be
slightly less efficient than to run the model
on a fixed mesh in time. However, this pro-
cedure might be useful in contexts for which
the solution is not known a priori. In such
cases, the location of sharp fronts is not
known and may require a tedious manual
remeshing in order to resolve these features.
Sometimes, this process has to be done iter-
atively a large number of times and, in such
a case, an adaptive strategy will prove far
superior.

In Chapter 4, we focused on the influ-
ence of step-like walls in the finite differ-
ence methods, extending the study of Ad-
croft and Marshall. We used vorticity bud-
gets as a diagnostic tool in order to assess
the accuracy of the numerical solutions. We
showed that the accuracy of FD methods de-
grades in presence of steps along the bound-
aries and that the truncation order is low-
ered. Depending on the specific numerics,
we estimated that the truncation error varies
between the zeroth and second order. In
general, we found that vorticity budgets are
not very accurate due to the presence of ex-
tra terms, such as the advection of vortic-
ity, which do not appear in the analytical
budget. Surprisingly, we noted that a quasi-
geostrophic model does not lead to signifi-
cantly more accurate vorticity budgets than
those given by shallow water models, even
though the former type of models explicitly
solves for the vorticity equation. We also
used a vorticity budget analysis on a shallow
water B-grid model with free-slip boundary
conditions which proved not to converge to
a steady state with time, whereas the equiv-
alent C-grid model does. In fact, this par-
ticular B-grid implementation proved to be
inadequate.

In Chapter 5, we explored the theoreti-
cal possibility that free-slip circulations can
develop their own eddies if the coastline is
curved enough. This chapter can be con-
sidered as an application of the spectral ele-
ment method and a contribution to the un-
derstanding of the ocean circulation from a
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theoretical point of view. Since it is not clear
what type of boundary conditions is the most
realistic to use at typical or even high res-
olution in ocean modelling, there is no ob-
vious reason to discard the free-slip bound-
ary condition!. So far, time dependent sim-
ulations of the nonlinear Munk problem in
rectangular domains under free-slip bound-
ary conditions show that the solution is very
steady once it reaches its equilibrium. That
is, no eddies develop. Moreover, under the
same boundary condition, the solution be-
comes completely unrealistic passed a certain
Reynolds number and still remains steady.
Hence, the necessary eddies that transport
the excess of vorticity to the walls are absent
in these simulations. Therefore, these simu-
lations in rectangular domains make a good
case against the use of the free-slip bound-
ary condition. This was certainly a strong
incentive to use instead the no-slip bound-
ary condition. However, the real oceans
present irregular coastlines which may be
the key-factor absent from these earlier ex-
periments. We therefore investigated the
influence of having curvy coastlines in the
otherwise usual Munk problem for varying
Reynolds number. The only model available
to us that could perform such a task with a
high degree of accuracy was the SE model.
The finite difference models are too sensitive
to the presence of steps along the coastline
and the tested FE models are too dissipative
for the Reynolds numbers we are interested
in.

From scaling arguments and assuming a
steady state with no transient eddies, we
were able to derive that the bumps along the
coastline cause the circulation to slow down
compared to the no-bump case. This was due
to the production of positive relative vortic-
ity at the walls close to the tip of the bumps
for a mid-latitude gyre in the northern hemi-
sphere?. Furthermore, as the Reynolds num-
ber increases, we predicted that the total ki-
netic energy should increase at much slower
rate than that of the no-bump case. If

!The no-slip and free-slip boundary conditions are
the traditional boundary conditions used in ocean
modelling but they are not the only ones possible.
In fact, some other parametrizations have been pro-
posed. See for instance Straub (1999).

2the sign of the relative vorticity produced at the
wall would be negative in the southern hemipshere
for a cyclonic gyre but our results would still apply.
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these free-slip circulations were able to pro-
duce their own eddies, it would be possible
that even lower total kinetic energy values
could be reached. Therefore, the presence
of bumps along the coastline might be suffi-
cient so that the main circulation escapes the
anti-intuitive fate of not converging to some
statistical steady state as the eddy viscosity
is decreased. This fate is known as the iner-
tial runaway and represents our inability to
explain how the nonlinear processes of sim-
ple flows are sufficient to balance a decrease
of poorly known diffusive parameters, such
as the eddy viscosity.

Unfortunately, only the first prediction
was verified; that the rate of increase of the
total kinetic energy with increasing Reynolds
number was decreased, but not reversed,
contrary to our second hypothesis. We also
noted a dependence on the local curvature of
the coastline. The higher the curvature, the
lower the total kinetic energy. Except for the
largest curvature, the solutions jump to an
unrealistic state passed a critical Reynolds
number. For the largest curvature and the
largest Reynolds number, we observe some
eddy activity but not enough to slow down
the total kinetic energy increase compared
to our scaling arguments. In fact, most of
the vorticity balance seems to be achieved
by the main circulation. Indeed, the vortic-
ity is large and positive along a significant
portion of the bumps which leads to a large
flux of vorticity at the walls. Moreover, we
observed that the vorticity tends to follow
a rather singular behavior along the bumps
even though the bumps are smoothly curved.
This was verified by using an adaptive mesh
algorithm which increases the resolution of
the model where the errors are the largest.
More eddies could have been generated by
larger curvature. However, we feared that we
reached the validity limit, in terms of length
scales of the observed processes, of the sim-
ple equations we were using, namely the shal-
low water equations. Baroclinic models may
be required to represent the small scales fea-
tures occurring along the western boundary.

One other important limitation of this
study that we need to mention is related to
the “fractal nature” of the coastline. From
that perspective, it is quite unreasonable to
define “one” curvature of the coastline, as
this one is modified with increasing sampling
of the coastline. Rather, we limit ourselves
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to the study of the influence of curved coast-
lines whose radius of curvature falls in the
range of scales of interest (from the radius of
deformation and the boundary layer widths
to the basin scale). A more realistic ap-
proach would be to use a spectrum of wave-
lengths and amplitudes consistent with real-
istic coastlines. The overall result might not
be very different from those presented in this
thesis, though.

The SE model showed great advantages as
a tool in order to address theoretical issues
such as the inertial runaway problem. As it
captures some features of the coastline, such
as the curvature, we could address the is-
sue of free-slip flows in presence of curved
coastlines. However, its general variable res-
olution coupled to an adaptive mesh refine-
ment enables this model to address the run-
away problem and other theoretical aspects
linked to nonlinear flows in presence of ir-
regular coastlines for any kind of boundary
condition. Nonetheless, the model still has
to prove its effectiveness in the more general
baroclinic framework. The vertical represen-
tation is certainly a very complex issue, and
different strategies are possible. Schemati-
cally, the vertical representation can be z- or
o- or isopycnal levelled. Of the three, the
o seems to be the most natural to the SE
method because it allows for a polynomial
description in the vertical as well. However,
it does not offer a good control on the par-
ticular depth range to resolve. It therefore
may have difficulties in resolving sharp tem-
perature or salinity gradients and may lead
to Gibbs oscillations. The same problem ex-
ists in low-order numerical methods, such as
finite difference models. However, it simply
leads to accuracy problems rather than sta-
bility problems.

This study was obviously biased in focus-
ing on one particular boundary condition,
the free-slip boundary condition. Under this
boundary condition, it is known that the FD
methods do poorly in presence of steps. It
may therefore seem obvious that SE meth-
ods do better. One may ask about the other
well known boundary condition, the no-slip
condition. For the no-slip boundary condi-
tion, we may assume that the FD methods
in irregular domains do as well as they do for
the nonlinear Munk problem in a rectangular
domain (Section 3.4). In the latter case, we
showed that the SE model does better only
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for high enough resolutions at which the er-
ror is below 1%. At this range of resolution,
the error is low enough that FD methods are
still competitive. Unless one is interested in
representing accurately the fast transients of
the ocean such as Kelvin waves, for which the
FD methods do poorly independently of the
boundary condition, the FD methods have
still a long future in front of them. This last
statement is also biased by the assumption
governing the primitive equations. If, for in-
stance, faster and bigger computers allow for
very high resolution non-hydrostatic simula-
tions (which require the inversion of a 3D ma-
trix problem), then the FE methods might
be attractive again, since their main over-
head, consisting of the inversion of a matrix
problem even when the equations are solved
explicitly in time, is no more.

The last point we would like to men-
tion is related to the effect of “real” steps
present along the coastline as opposed to
“fake steps” that FD discretization tend to
generate. As they are singular features, no
numerical method is able to model them,
although some analytical approaches were
proposed (Cherniawsky and Leblond, 1986).
Nevertheless, real steps can be approached as
the limit of increasing to infinity the curva-
ture of the bumps. From that point of view,
we can derive some qualitative conclusions
based on the results obtained in Chapter 5
with the SE model. It seems that steps al-
ways have a dissipative effect and that all
the fields will be singular close to the step.
Therefore, the corrected version of Adcroft
and Marshall (the B combination of Chap-
ter 4) is biased because it under-represents
the effect of steps by assuming that they are
non-existent to the point that circulations
in rotated basins look similar to circulation
in non-rotated basins. Hence, their method
is very successful in rotated rectangular do-
mains but fails in more generally irregular
domains. The correct solution in presence of
irregular domains depends on the irregular-
ity of the domain. It lies between the cor-
rected version of Adcroft and Marshall and
the traditional implementation of the C-grid
model which is more dissipative. Ultimately,
the true solution reflects the fractal nature
of the coastline.

93



Appendix A

An A-grid Energy Conserving

Formulation

1 cell index
Vol cell Volume
Fy normal oriented face length
any variable
é interpolated
b at the center
of face
neigh face index for the i-cell

Table A.1: Notations for the finite volume
method

It is possible to formulate an energy con-
serving scheme on a A-grid and generalize it
to a finite volume formulation (i.e., irregular
domains). We will use the notations of the
latter (Table A.1). The time integration has
to be done through an iteration process since
the formulation is semi-implicit in time, in-
cluding the non-linear terms.

u —u

At

n
Vol;
neigh

,],’TL‘FI 7]”
lZthz + Z F, - (uih)b =0 (Al)

Vo
neigh

where ¢* (¢"*! + ¢™)/2 for any ¢. By
multiplying A.1 by ufh?, we get

1771

+12 2
Volih*fu i Z Fy whiBf =0.
(2 At ~ 771
neig

(A.2)

L(fit¢Hkxui+ Y FyB; =0

Let us define K = u? and use U = hu, then
A.2 reads

Kntl _ gn
Volihf —t———-

* ok

neigh
(A.3)
and let us multiply A.1 by K and use the
equivalence 0h/0t = On/ot
n+1

hrHl

Vol Ki - Aot > KiF, - U;=0.

neigh
(A.4)
We then sum together A.3 and A.4 in order
to get an equation for the kinetic energy

[ni K — B KT
At
+ > Fy- (K;U; +UB;) =0.
neigh

Vol;
(A.5)

The equation for the potential energy is given
by multiplying A.1 by gn;

2 — g(n?)?

Vol 2 ( N

+> gy U =0.
neigh

(A.6)
Let us define e, = gn? + hK. We then get

the total energy equation by summing A.5
and A.6

n+1 n
Vol, (ex); +A; (ex);
(A.7)
+ > Fy- (BfU; + UB;) =0.

neigh
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Therefore, the total energy budget is
TKE"*' -~ TKE"
=Y Vol [(ex)] ! = (es)]
i

=-AtY Y Fy,-(BjU; +UiB;) .
it neigh

(A.8)

Hence, the conservation properties of this
scheme comes from the assumption about
¢», the way we interpolate the data onto the
faces of the cells. The usual assumption is
to take for any ¢, ¢p = 1/2(¢p; + ¢;) where j
is the index of the neighboring celf. Because
Zneigh F;, = 0, the right hand side simplifies
to

TKE" — TKE™
BU; +U;B; . (A.9)

:—AtZZF,,- 5

i neigh

The right hand side vanishes for open do-
mains. For closed domains, some assump-
tions are required. If we imagine a fictitious
cell on the other side of the wall, we must
have

Fy- [BiU; +U;Bj| =0. (A.10)

This can be satisfied if B} = B;. We are then
left with satisfying Fy, - (U7 + U}) = 0. This
corresponds to enforcing that the velocity is
tangential at the wall. This is a very reason-
able assumption since it matches the inviscid
boundary condition. Hence, the energy can
be conserved for an A-grid scheme in absence
of dissipation processes and forcing.

In practice, this scheme only retards the
upcoming of spurious modes. In order to
control the spurious modes, one idea would
be to make the scheme also conserve the en-
strophy. According to Abramopoulos (1988),
this is achievable but a unreasonable price.
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Model Vorticity Budget on a

B-grid

Using Equations 2.21 and 2.22, the model
vorticity equation is obtained at the center
of the cell (also the n location):

48

5 + Dfulv+ vAyvy — D;'uAIu + vAyum

+Df g0, 7" — Dy g0, 7"
+DFfu’ + 0y fu"

T

Y
_pt, Ty +, T
_ng? —Dygﬁ
+D/F,” - D/F;" .
(B.1)

Study of this equation shows that all terms
cancel out in the interior. However, close
to corners, they are not necessarily zero.
The pressure term, hereafter Ip, for instance
gives after summation over the domain and
emphasizing the terms close to the northeast
corner (assuming Az = Ay = A):

Ip:ZZA:EAy
J

1
(DEed, 7" - D90 ") (pa
g * *
=5 (W15 = 7i1)

+ -+ + other corner terms

where n* is the extrapolated value of the ele-
vation along the wall and (7, j) are the indices
taken at the velocity point directly southwest
of the corner. When using a linear extrap-

olating law, nfﬂyj = 3/2ni; — 1/2mi—15, Ip

becomes

g
To=2(ni 1 — 1.
P 4 (771,] 1= 1 1,]) (B.3)

+ --- + other corner terms .

Hence, the pressure term in the vorticity
equation does not cancel out. However, for
the advective terms, hereafter I,4,, we have

Logy = Z Z AJ:Ay
J

i
(Dfulgv+ vAyvy (B4)
_D;'uAmu + vAyux)

which simplifies first to a circulation integral
of the form

= Z uVu- Al. (B.5)
One can prove that this summation cancels
out. Hence, I,4, = 0. The same occurs for
the Coriolis terms because the summation
can be recast as a summation of flux nor-
mal to the wall at velocity points along the
wall, which are zero due to the impermeabil-
ity condition. Therefore, the model vorticity
budget reduces in the case of the B-grid to

0
SN P nedy = Fit Fuis—Tp . (B)
i

Hence Ip is present in the model budget
whereas it should ideally be zero. Note that
a zero order extrapolation (n7, ; = 7ij) re-
sults in the cancellation of Ip. However, this
extrapolation leads to countercurrents along
the boundaries for the Munk problem on a
beta plane, as shown in Section 4.2.
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