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Abstract

The development of an adaptive (in space and time) ocean model from an existing adaptive finite-volume Navier—Stokes
model is described. A flexible and efficient quadtree spatial discretisation is used which requires collocation of all variables
(i.e. an A-grid discretisation). We demonstrate that the use of an approximate projection method allows for implicit damp-
ing of instabilities generally associated with the A-grid, at the expense of a relatively small amount of numerical energy
dissipation, while accurately preserving dispersive properties and geostrophic balance. The finite-volume formulation also
maintains second-order spatial accuracy at all solid boundaries. Test cases demonstrate the efficacy of the adaptive ocean
model, and the advantages it has in terms of efficient representation of multi-scale behaviour within a single model. The
model is freely available as open-source code.
© 2006 Elsevier Ltd. All rights reserved.

1. Introduction

This paper details the extension of an adaptive, finite-volume, three-dimensional, incompressible, Navier—
Stokes fluid solver (the Gerris Flow Solver, Popinet (2006, 2003)) into a dynamical core able to model geo-
physical fluid flows. Here the focus will be on ocean modelling, but the core can be extended to the atmosphere
as well (Marshall et al., 2004). The ability of the model to adapt in space and time constrains the structure of
the solver. Nevertheless, the tests described here show that many of the fundamental requirements of a
geophysical solver can be more than adequately met by this novel adaptive solver.

Why is having adaptivity relevant? In nature, the global dynamics of oceanic or atmospheric flows are
controlled by processes occurring on widely different spatial scales. In the ocean, narrow straits control the
exchanges between large ocean basins, energetic but thin western boundary currents define latitudinal heat
transport and a few geographically small areas control much of the deep ocean circulation through deep water
formation. Getting to even smaller spatial scales, the dynamics of near-shore mixing, internal tides, sediments
transport and freshwater input is of crucial importance to ecosystems and human activities but depends
directly on larger-scale offshore processes (and conversely).
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The regular Cartesian spatial discretisations traditionally used in geophysical models are easy to analyse
mathematically and easy to implement but lead to a constant spatial resolution (or quasi-constant depending
on the type of spherical-to-planar projection) independent from any physics-related scale dependence. While
large increases in computational resources have allowed ever finer spatial resolutions to be reached using tra-
ditional models, the computational efficiency of the numerical schemes is still a very important issue for many
applications. A logical way to decrease the computational cost is to discretise the solution using a more opti-
mal spatial distribution of the discretisation elements. Simple applications of this idea to Cartesian meshes
lead to grid nesting or stretched grids using curvilinear coordinates. In the wider field of computational fluid
dynamics, finite-volume or more rarely finite-element discretisations on unstructured meshes provide almost
full flexibility in the choice of local spatial resolution.

It is important to make the distinction between methods where the spatial resolution can vary but is fixed in
time (and usually defined a priori by the user) and adaptive methods where the resolution is continuously
adjusted according to the properties of the solution. Adaptive methods do not require a priori assumptions
about the solution but instead use error estimates to ensure an optimal distribution of discretisation elements.
In the context of geophysical fluid flows, adaptive methods have the potential to greatly improve the descrip-
tion of spatially restricted but time-varying processes such as: strong density gradients associated with oceanic
or atmospheric fronts, eddying of western boundary currents, tidally-driven small-scale mixing/transport near
coastlines etc.

A number of recent initiatives have sought to apply the more flexible techniques developed for computa-
tional fluid dynamics to geophysical fluid modelling, in recognition of the shortcomings of regular Cartesian
discretisation (as well as ad hoc grid nesting). The focus has been mainly on using finite-volume or finite-
element methods on statically-refined unstructured grids for barotropic coastal ocean modelling (Chen
et al., 2003; Walters, 1986; Walters et al., 2001). Unstructured grids allow an accurate description of complex
coastlines and the coastal ocean is a natural extension of the river flows for which these models were initially
developed (Walters and Casulli, 1998). The extension of finite-element or finite-volume models to large-scale
oceanic flows is non-trivial because of the need to guarantee specific properties of the large-scale flows. Geo-
strophic balance must be represented accurately at the discrete level and — more generally — energy must be
better conserved because of the low energy dissipation in the open ocean. Cartesian methods have benefited
from decades of development and describe the large-scale ocean dynamics accurately. Optimal schemes for
finite-volume or finite-element formulations on unstructured grids remain a subject of active research (Chen
et al., 2003; Le Roux et al., 1997, 2000; Walters and Barragy, 1997).

Different adaptive methods have been applied to atmospheric and ocean modelling. For instance Blayo and
Debreu (1999), Bacon et al. (2000) and Giraldo (2000) have studied adaptive techniques, and indeed Bacon
et al. (2000) use their system OMEGA (The Operational Multiscale Environment Model with Grid Adapti-
vity) for real time hazard prediction. More recent adaptive developments include, e.g., Power et al. (2006)
(and references therein to their adaptive finite element ocean model), Herrnstein et al. (2005), Barros and Gar-
cia (2004), indicating the on-going level of activity and interest for the application of adaptive methods in
geophysical modelling.

Recently, Popinet (2003, 2006) showed that a hierarchical tree-based spatial discretisation can efficiently
provide the flexibility of fully unstructured grids while preserving the simplicity and conceptual framework
of Cartesian grids. This work also showed that adapting the discretisation dynamically at each timestep
was practical and only represented a small fraction of the total computational cost. The adaptive solver led
to several order of magnitude savings in computational time for complex three-dimensional problems.

In this article, we propose to extend the work of Popinet (2003) to obtain an adaptive method for large-
scale oceanic flows with good mass and energy conservation properties and accurate geostrophic balance
representation. The overall numerical scheme will be described but we refer the reader interested in the details
of the quadtree/octree discretisation and multilevel solver implementation to Popinet (2003). We will also try
to reproduce previously published test cases designed to assess several properties of the numerical scheme: rep-
resentation of inertia-gravity waves, geostrophic balance and bathymetry. An application illustrating the
potential of the adaptive method for practical problems will also be presented.

In the following section the system under consideration is defined. In Sections 3 and 4 the spatial and tem-
poral discretisations, respectively, consistent with the Gerris flow solver are described, followed by Section 5
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detailing our application of the adaptive aspects implied by Gerris for oceanic flows. Section 6 presents a series
of applications to two- and three-dimensional test problems, and finishes with an example of adaptivity in the
context of multi-scale flow evolution (in this case that of tidally driven flow in Cook Strait, New Zealand).
Conclusions are presented in Section 7.

2. Problem definition

Our initial goal is to solve the Boussinesq, incompressible, hydrostatic equations of oceanic motion in a
Cartesian reference frame. We will also make a “shallow water” approximation and neglect the coupling terms
arising from the vertical motion (Marshall et al., 1997b). The equations can then be written as

U+ U-VU+wo,U=BU+S—Vp—gVy
for the horizontal momentum,

OH+V-HU=0
for continuity,

o +U- VI +wo.T =Sr
for temperature,

0,S+ U-VS+wo,S =S5

for salinity, with U = (u,v) the horizontal components of the velocity,

5= o)

where f'is the Coriolis parameter, H = /i + n where / is the depth of the ocean and # the surface elevation. S,
S7 and S contain the forcing and dissipation terms. U is the depth-averaged fluid velocity. The Boussinesq
hydrostatic pressure p is obtained as

where 0p is the deviation from the reference density po obtained using the equation of state p = p(T, S, p). The
vertical component w of the velocity is obtained by vertical integration of the continuity equation as

w:—/OZV-U (1)

If we assume that n < & the continuity equation can be linearised as
om+V-hU=0

These approximations are representative of current ocean models designed for large-scale flows (as noted by
Marshall et al. (1997b) they are often incorrectly referred to as the “primitive equations” of oceanic motion).
The hydrostatic assumption breaks down at scales corresponding to convective overturning in the ocean
(~1 km) (Marshall et al., 1997b). The linearised free-surface approximation can cause problems for global
tracer conservation (Roullet and Madec, 2000; Campin et al., 2004) and becomes inconsistent when the ampli-
tude of free-surface motion is comparable to the depth (e.g. tidal perturbations near coastlines). None of these
approximations is a necessary prerequisite for the approach described in this article but they make the initial
implementation simpler while preserving all the important physical properties of the oceanic system. In the
future we expect to be able to follow the work of Marshall et al. to relax both the hydrostatic and linear
free-surface assumptions (Marshall et al., 1997a). Our starting point being a full 3D Navier—Stokes solver
should make this easier.

Please cite this article in press as: Popinet, S., Rickard, G., A tree-based solver for adaptive ocean modelling, Ocean
Modell. (2006), doi:10.1016/j.0cemod.2006.10.002




4 S. Popinet, G. Rickard| Ocean Modelling xxx (2006) xxx—xxx
3. Spatial discretisation

In this article, we would like to explore how well existing geophysical discretisation techniques fit within the
tree-based approach presented in Popinet (2003). The tree-based discretisation was shown to be a good com-
promise in term of flexibility and computational efficiency. By tree-based we mean either a quadtree structure
in two dimensions or an octree structure in three dimensions. Here, the discussion focuses on the quadtree
structure, but all properties map equally well into the third dimension.

In the quadtree discretisation, individual cells are classical Cartesian square finite volumes but they are
organised hierarchically rather than as an array. Each cell can be the parent of up to four children cells; this
is the process at the heart of adaptivity. The resulting recursive structure is a tree (Fig. 1) and is easily repre-
sented using memory pointers. While this discretisation is not as flexible as a fully-unstructured mesh, it does
not require additional geometric information and as importantly preserves the simplicity of the discretisation
given by orthogonal Cartesian discretisation volumes.

A finite-volume approach (where the solution is averaged on the control volume defined by each cell)
imposes an important restriction on the type of discretisation permitted on a quadtree. Let us consider a
C-grid discretisation where the quadtree hierarchy is centred on the pressure (Fig. 2). When refining the grid,
the new control volumes for each velocity component do not necessarily delimit a full subset of the coarser
control volumes (the single-hashed area in Fig. 2b is covered by the coarser control volume but not by any
of the finer control volumes). It is thus not clear how to consistently and conservatively define the refined
values of the momentum components as well as fluxes at coarse—fine boundaries. If one relaxes the finite-vol-
ume constraint and uses finite differences instead this problem does not occur but the important conservation
properties of finite-volume schemes are lost. A solution would be to maintain independent staggered quadtree
hierarchies but this greatly complicates the computation of terms coupling variables defined on different hier-
archies. A collocated discretisation (Arakawa A-grid) eliminates this specific problem and is used in the pres-
ent work in order to allow the use of adaptivity.

Collocated A-grid discretisations are usually avoided in ocean models because of the strong computational
modes induced by pressure-velocity decoupling as well as the associated degradation of the dispersive prop-
erties of gravity waves. Ocean models traditionally use a staggered Arakawa C-grid or B-grid. C-grids are
preferred for finer-scale ocean modelling due to their superior discretisation of the dispersion properties of
gravity waves. B-grids show superior discretisation of large-scale inertial waves because they use collocated
definitions of the velocity components which allows the Coriolis terms to be computed without any need
for interpolation. It is important to note that both B-grids and C-grids suffer from spatial computational
modes. In the case of C-grids the computational mode arise from the need to interpolate the values of each
component of the velocity to the location of the other component in order to compute the Coriolis term.
The resulting computational mode can be problematic for relatively coarse-resolution global ocean modelling
(Adcroft et al., 1999). B-grids suffer from a pressure computational mode caused by the collocation of the
velocity components. Neither discretisation is thus entirely mode-free and filters are often used to keep the
computational modes in check. More complex discretisations have been proposed which attempt to solve this
problem (C-D grid of Adcroft et al. (1999)).

Fig. 1. Example of quadtree discretisation and corresponding tree representation. The dotted lines on the right-hand-side define the level
of the cells.
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Fig. 2. Staggered C-grid discretisation on a quadtree. (a) Initial coarse grid showing the control volume for the horizontal component of
the velocity. (b) The cell centred on the pressure discretisation has been refined once. The union of the control volumes of the newly defined
horizontal components is given by the cross-hashed area.

Several notable exceptions that use an A-grid have relied on higher-order discretisations (Dietrich, 1997) or
other forms of built-in filtering (Kar, 1999) in order to control computational modes. More generally, the
pressure—velocity decoupling problem of collocated schemes had also been recognised early in the history
of incompressible flow solvers (Harlow and Welch, 1965) and more recently solutions have been developed
(Lai et al., 1993; Rider, 1995; Almgren et al., 2001). Building on this previous work, we propose in Section
5 a semi-implicit barotropic solver on a collocated A-grid.

Vertical discretisation has been the topic of a large number of recent studies (Bleck, 2002; Adcroft and
Campin, 2004; Song and Hou, 2006). While our work relies on horizontal collocation, it does not impose
restrictions on the vertical discretisation. In Section 5.4 we describe a z-level vertical discretisation with an
accurate finite-volume description of solid boundaries.

4. Temporal discretisation

The time discretisation of the equations of motion can theoretically be chosen independently from the spa-
tial discretisation although in practice we will see that some combinations of time-discretisations are much eas-
ier to implement using specific spatial schemes.

Advancing the equations of motion in time requires the solution of three independent sub-problems:

1. Pressure update through the barotropic equation.
2. Computation of advection terms in the momentum equation.
3. Computation of Coriolis terms in the momentum equation.

Time-explicit discretisation of the barotropic equation is simple but stability requires the resolution of the
fast external gravity waves which imposes a strong restriction on the maximum timestep. This problem has
been addressed in two ways. The barotropic equation can be advanced independently from the momentum
equation using a stable, shorter timestep (split-explicit schemes (Shchepetkin and McWilliams, 2005)). Chang-
ing the discretisation to a fully- or semi-implicit scheme removes the constraint on the timestep altogether
(Dukowicz and Smith, 1994) and allows the use of a single timestep for the whole scheme.

Both schemes have advantages and drawbacks. An implicit discretisation requires the resolution of a
spatially-coupled linear system at every timestep. This can be expensive if naive algorithms are used, however
modern techniques such as multigrid or pre-conditioned conjugate gradients can be very efficient for this type
of problem (arguably more efficient than the multiple timesteps of a split-explicit solution method). Implicit
schemes are stable but do not guarantee a physically-meaningful aliasing of the unresolved fast gravity waves.
While a split-explicit technique should describe correctly all the external gravity wavelengths, the synchroni-
sation step necessary to reconcile the fast pressure solution and the slow momentum solution adds complexity
(Shchepetkin and McWilliams, 2005). As a result, for both schemes the impact of the coupling of the fast gra-
vity waves with the slow momentum equations is problem-dependent and is unclear in most cases. In this work
we use a semi-implicit discretisation with a multigrid solver for the linear system.
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A common way to compute the advection term of the momentum equation is to use a leap-frog scheme.
This scheme is simple to implement and has the theoretical advantage of providing a purely non-diffusive
solution. This solution is not guaranteed to be oscillations-free (monotonic) however and the leap-frog discret-
isation introduces a temporal computational mode. Some form of explicit filtering (added diffusion) or implicit
filtering (e.g. damping provided by the implicit discretisation of the barotropic equation (Dukowicz and
Smith, 1994)) is used in practice, thus cancelling the non-diffusive property of the initial scheme. More
recently, ocean modellers have started to use more sophisticated advection schemes initially developed for
the solution of compressible flows. These schemes are stable and non-oscillatory even in the presence of strong
discontinuities. These properties are obtained through a judicious construction of built-in diffusivity. They are
also more computationally expensive than simpler schemes. In our previous work (Popinet, 2003) we have suc-
cessfully used the incompressible version of a two-time-levels, predictor—corrector, unsplit scheme developed
by Bell, Collela and Glaz (BCG) (Bell et al., 1989) and this is what we make use of in this work.

The Coriolis term can also be discretised using a leap-frog scheme. An alternative is to use an Adams—Bash-
forth (AB) discretisation which can be adapted to any underlying time-discretisation (leap-frog, predictor—
corrector (Marshall et al., 1997a) or semi-implicit). The AB scheme uses the previous two time-levels to extrap-
olate the value of the Coriolis term at the time-level required to ensure second-order accuracy in time. In the
case of an AB discretisation of the Coriolis terms coupled with the barotropic equation, the stability criterion
is non-trivial. We present in Appendix A a detailed analysis of the stability properties of an AB discretisation of
the Coriolis terms coupled with a semi-implicit discretisation of the barotropic equation. The analysis is difficult
due to the third time-level introduced by the AB scheme. We show that the complex behaviour of inertia-gravity
waves gives rise to a stability criterion which can be quite restrictive for this combination.

A simpler and more easily analysed alternative is to use a semi-implicit discretisation of the Coriolis terms,
which fits well with a semi-implicit treatment of the barotropic equation. The resulting two-time-levels scheme
is easy to analyse and is unconditionally stable. If the velocity components are collocated (e.g. A- or B-grid)
the semi-implicit discretisation leads to a compact linear system which can be inverted analytically (see Section
5). In the case of a staggered discretisation of the velocity components (C-grid), the semi-implicit discretisation
of the Coriolis terms leads to a globally-coupled sparse linear system which needs to be solved numerically at
each timestep. This greatly complicates the solution procedure and is the main reason why semi-implicit dis-
cretisations of Coriolis terms are avoided on C-grids.

5. A quadtree, adaptive, semi-implicit scheme

Taking into account the previous discussion and keeping in mind that our starting point is the adaptive
incompressible solver presented in Popinet (2003) we chose to use a two-time-levels, semi-implicit discretisa-
tion of both the barotropic and Coriolis terms. If the components of the velocity are collocated, the discrete
time evolution of the barotropic momentum can be written

Un+1 o Un
At
where At is the timestep, # is the time level and « controls the degree of implicitness. All the other source terms

(advection terms, viscous diffusion, forcing) are contained in sz, Similarly the continuity equation can be
written

= B(1 - 9)U" + aU"""] — gV[(1 — a)n" + ™) + 82, 2)

n

,,]n+1 -7
At

where 0 is another free parameter. If « and 0 are set to 1/2, the discretisation is a second-order accurate Crank—
Nicolson scheme. It is also unconditionally stable and conserves the total energy.

When expressed in this form, the semi-implicit schemes for the momentum and the continuity equations are
coupled through the Coriolis terms. A simpler uncoupled second-order accurate approximation can be
obtained through a splitting technique. If we pose

i} = Un+l + Atgv[a/nn+l _ (1 _ O(/)’711]7

+V-h[(1—-0)U" +0U™"] =0, (3)
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where o is another control parameter, we can rewrite (2) as

(I — aAtB)U + aAPgBV [y — (1 — o )p") = [I + (1 — 0) AtB]U" — 2(1 — o/ )AtgViy" + AtS" "2,

where 1 is the identity matrix. The second term on the left-hand side is clearly second-order in time, moreover
if o/ is set to 1/2 the prefactor is only the (small) relative change in surface-height gradient. This leads to the
second-order accurate, explicit approximation for U

(I — asAtBYU = [I + (1 — o) AtB|U" — 2(1 — o) AtgVi" + AtS"™* + O(AF). (4)
The resulting 2 x 2 system is easily inverted analytically. If we now pose

U* = U + (1 — o) AigVyy", (5)
Eq. (3) can be rewritten

' — 0 APV - BV =" — AtV - B[(1 — 0)U" + OU™). (6)
Egs. (4)—(6) are now entirely decoupled. The full solution procedure can be summarised as follows:

1. Compute U using v, ", S and (4)
2. Compute U* using U, 5" and (5)

3. Compute 7" using U", U*, " and (6)
4. Compute U™ = U* — o/ AtVy™+!

The overall scheme is very similar to the projection method (also known as “pressure-correction” method)
often used to solve incompressible flow problems (Chorin, 1968; Peyret and Taylor, 1985) or equivalently
oceans with a rigid-lid approximation (Marshall et al., 1997a). In a first phase a provisional velocity field
U™ is obtained by adding to U" all the (explicit) source terms of the momentum equation with the exception
of the pressure-gradient term. In a second phase the pressure compensating the eventual divergence of U* is
obtained through the solution of a Poisson-like equation and the corresponding pressure gradient term is
added to U* in order to obtain a non-divergent U""".

The semi-implicit scheme presented here differs slightly from this outline because a linear free-surface
approximation is made rather than a stricter rigid-lid approximation. The free-surface Eq. (6) (equivalent
to the pressure equation for incompressible flows) is then of Helmholtz-type (x + aV>x = .. .) rather than Pois-
son-type (V2x = ...). In both cases, the spatial coupling induced by the Laplacian operator results in a sparse
linear system. In the case of incompressible flows, the solution of this system largely dominates the computa-
tional cost of the overall scheme. Much effort has thus gone into efficient solution procedures for this type of
systems. Multigrid techniques in particular can achieve an optimal (/(n) asymptotic computational cost (where
n is the number of unknowns) (Brandt, 1982; Bramble, 1993).

As noted by ocean modellers (Dukowicz and Smith, 1994), the linear system described by Eq. (6) is easier to
solve than the Poisson problem of a rigid-lid approximation. This is due to the "' term on the left-hand side
of (6) which increases the weight of the diagonal when At is small enough and thus leads to a better-condi-
tioned linear system. If At is large, the added diagonal term becomes small compared to the Laplacian and
the solution converges toward the incompressible Poisson solution, with a corresponding stiffness of the linear
system. We expect that the multilevel quadtree Poisson solver we developed in Popinet (2003) will perform
well in both limits.

5.1. Exact and approximate projections

Up to this point we have only assumed that the velocity components are collocated. The discrete gradient
and divergence operators appearing in (4)—(6) will depend on the details of the spatial discretisation. To
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simplify the argument we will consider a one-dimensional problem with g =/ = 1. The discrete divergence
operator can then be expressed as
Uu; — U;_
V,‘ - t+l/2Ax i 1/2’

which is also a consistent finite-volume discretisation (when u;1; s, and u;_j,, are interpreted as fluxes through
the boundaries of the control volume centred on u;). For a collocated scheme, u is defined only at integer loca-
tions. The half-integer values can be approximated to second-order using a linear interpolation from cell
centres. This gives the second-order accurate discretisation

_ Uiyl — Ui

Vo=t )
Similarly the discrete gradient operator for the collocated surface-height can be expressed as
o N — i
Vil = =57 (8)
The discrete Laplacian appearing in (6) results from the combination of these operators as
) v (o M2 — 20 41,5
(V-V)n=V;-(Vin) = A2 . 9)

The corresponding stencil is twice as wide as the initial discretisation and results in two discrete solutions for
odd and even ;s only coupled through the boundary conditions. This is another way to express the existence
of a computational mode for a collocated discretisation.

Aside from the inherent instability of a scheme containing computational modes (Lai et al., 1993; Kar,
1999), the wide stencil of the Laplacian greatly complicates the solution of (6) when a non-uniform resolution
is used (Popinet, 2003). The standard compact Laplacian

2 M = 2040y
Vil ="
is also second-order and could be used instead in (6), however this would mean that the discrete Laplacian
used is not anymore the convolution of the discrete divergence operator (7) and discrete gradient operator
(8). The difference is (/(Ax?) and can be written

=200 + 20 = 20, + 1
4Ax? '

Fi(n) = (V- V) = Vi =12
Eq. (6) then becomes
= 0 AP I — 0/ AT (") = it — AV - (1 — O)u 4 Ou*).

Replacing the wide-stencil Laplacian with the compact-stencil Laplacian would thus be equivalent to adding a
0/ AP F (") term to the left-hand-side of Eq. (6). This term can be seen as a spatial filter on 7.

The initial wide-stencil Laplacian is constructed so that the discretisation of the continuity Eq. (6) guaran-
tees volume conservation i.e. the discrete gradient of """ applied to U* guarantees the discrete non-diver-
gence (in the finite volume sense described in Section 5.2) of U""'. This is the definition of an exact
projection (Peyret and Taylor, 1985). Replacing the wide-stencil Laplacian with a compact stencil guarantees
volume conservation only in an asymptotic manner (the error on the discrete divergence is of order Ax?). This
defines an approximate projection (Rider, 1995; Almgren et al., 2001). An important consequence is that the
total energy is not exactly preserved anymore. This is clearly apparent in the form of the #; error which acts as
a dissipative term on the free-surface height (and thus on the potential energy). In the case of incompressible
flows, this dissipative term has been shown to have the beneficial side-effect of almost eliminating the pressure
oscillations associated with a collocated discretisation (Rider, 1995). Moreover, the relaxation of strict energy
conservation has only a small effect on the quality of the solutions obtained and the transport of momentum
and tracers can still be formulated as to guarantee exact conservation (Almgren et al., 1998). In Section 6.1 we
study whether these conclusions still apply in the case of a linear free-surface ocean formulation.
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5.2. Advection and conservation properties

The advection terms appearing in the momentum and tracer equations (contained in ST2 4 (2)) are com-
puted using a conservative finite-volume predictor—corrector scheme. If we consider a tracer ¢ contained in a
cubic cell € of boundary 0% the integrated advection term can be written

/A"% = /[U : Vc]”+% Wt = / V. (Uc)”+% + 6z(wc)"+% = / U™ -+ wn,) (10)
J& % % %

where n = (ny,n,,n.) is the unit normal to the boundary and we have used the Stokes theorem and the non-
divergence (incompressibility) condition V- U + 0,w = 0. A discretised form can be written as

n+t
/{/ATT/% = 4> [( )1+%,j,k - (uc)i—%,j,k + (Uc)i,_/#%k - (Uc>i,jf%‘k + (Wc)i,j.,kJr% - (Wc)i,j,kf%:| ) (11)
where 4 is the size of the cell. Values of the tracer and normal components of the velocity are needed on cell
faces at time level n + 1/2. We use a Godunov procedure where face values are extrapolated in space and time
from time- and cell-centred values using a second-order Taylor series expansion. This scheme as been
described in detail in Popinet (2003) and Bell et al. (1989) and we will just summarise its properties here.
Upwinding is performed in order to reconcile values extrapolated on both sides of the faces and standard
limiters can be used for fields with sharp discontinuities. The resulting scheme is the second-order, non-oscil-
latory, unsplit upwind scheme of Bell et al. (1989). Stability is ensured independently of an explicit dissipation
term, provided the CFL number is smaller than one.
It is clear from (11) that local conservation of ¢ is guaranteed only if

ui+%1/"k - ul*—/k + Utj+l k Ul]*lk + Wl/k+l - Wi‘j‘kf% =0

which is the discrete expression of the non-divergence condition. The face velocities constructed using the
Godunov scheme do not necessarily verify this condition. In our original scheme for incompressible flows
an exact projection is applied to the face-based normal velocity field at time n + 1/2 to restore this condition.
The resulting advection scheme is thus exactly conservative.

In the case of our hydrostatic, linear free-surface ocean model, the vertical component of the velocity w is
obtained diagnostically through the vertical continuity condition (1) which is just another way to express the
non-divergence condition. Noting that w appears only in the advection terms of the equations of motion and is
thus needed only at cell faces, we can write a discretised finite-volume expression of (1) as

ljk+1 _le2+ E ul——/k’ — Ul Jk’ +Ut/——k’ _Ulﬁ»,k' (12)

where w; ;1> is the boundary condition for w at the bottom of the ocean. The discrete non-divergence condi-
tion is thus trivially satisfied at all levels k& and the advection scheme is locally conservative.

As noted in other studies (Roullet and Madec, 2000; Griffies et al., 2001), this does not guarantee global
conservation however. This is due to the linear free-surface approximation which allows (small) fluctuations
in the volume of each discretised vertical column of fluid. As a result, the vertical velocity at the top of the
column obtained using (12) is non-zero (it is equal to the speed of the vertical free-surface motion). This gen-
erates either an outgoing tracer flux at the top of the column which is lost to the system (because the free-sur-
face layer is not represented) or an extrapolated incoming flux which may not match the required boundary
conditions. While these fluxes should be small when the linear approximation is valid, nothing guarantees that
they balance over the whole system and strict global conservation is not ensured.

5.3. Adaptivity
The original incompressible flow solver Gerris uses a fully three-dimensional adaptive octree discretisation.

Each dimension is treated in exactly the same way and refinement or coarsening occur simultaneously on all
three dimensions (i.e. adaptivity is isotropic). A direct extension of this approach to oceanic flows is possible
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but poses several problems. Isotropic adaptivity means that the aspect ratio of cells is independent of the
resolution. Taking a typical coarse oceanic discretisation with an horizontal resolution of 9.6 km and vertical
resolution of 16 m, refining six times would lead to a cell with an horizontal resolution of 150 m and a vertical
resolution of 25 cm. This is probably too high and would lead to a very large number of “layers” in the
vertical. Non-isotropic refinement would allow the vertical resolution to be changed independently from
the horizontal resolution. Such a capability would require substantial changes in the Gerris code base, how-
ever. For this first implementation we chose not to adapt the vertical resolution.

The model can then be seen as a fixed number of quadtree-discretised layers of constant thickness stacked
vertically. The solution of the barotropic equation, hydrostatic pressure and diagnostic vertical velocity
require local vertical integration over the whole depth of the water column. This is very simple when the dis-
cretised control volumes are aligned vertically i.e. when the horizontal resolution is independent of depth. We
also add this constraint for our initial implementation. This is probably a more important restriction than the
constant-thickness-layers approach because surface and deep currents are expected to have significantly differ-
ent structures and associated spatial scales. Relaxing this constraint is certainly possible however and this will
be the subject of future work.

When refining or coarsening the mesh, care must be taken to conservatively interpolate values from coarse
to fine or fine to coarse cells. Simple averaging guarantees a conservative fine to coarse interpolation. For
coarse to fine interpolation, values are interpolated linearly using the cell-centred gradient computed on the
coarse cell. This also guarantees exact mass and momentum conservation.

Gerris provides a flexible framework for specifying adaptive refinement criteria. Several criteria can be spec-
ified simultaneously (such as vorticity, tracer gradients) and the threshold for refinement/coarsening as well as
minimum and maximum number of refinement levels can themselves be functions of space and time. A limit
on the total size of the simulation can also be set. When reached, the code automatically redistributes the cells
in order to globally minimise the refinement cost given by the user-defined criteria.

We also note that Gerris does not use time-adaptivity in the sense that a single global timestep is used irre-
spective of the spatial resolution. Subcycling in time depending on the level of refinement is possible in prin-
ciple but leads to complex synchronisation problems to ensure the discrete non-divergence of the global
velocity field (Almgren et al., 1998). In practice the finest grid cells often represent as much as half the total
number of cells. Thus, an ideal subcycling implementation would only halve the computational cost compared
to simple global time-stepping.

5.4. Representation of boundaries

Traditional height-coordinate ocean models on Cartesian grids usually represent the bottom shape of ocean
basins using a “‘staircase” topography. The coastlines are also often restricted to following the edges of the
square discretisation elements. This is a simple but rather crude approach which has been shown to substan-
tially affect the accuracy of the solution (Adcroft et al., 1997, Dupont, 2001).

A terrain-following vertical coordinate can be used instead of the height-coordinate (Haidvogel et al., 1991;
Song and Haidvogel, 1994). This theoretically ensures an accurate representation of the bottom topography
(but does not improve the coastline representation). In practice the c-coordinate transformation causes the
surfaces of constant pressure (which are nearly horizontal) to intersect the vertical discretisation at large angles
near steep topography. This causes large errors in the discretisation of the horizontal pressure gradients which
lead to strong spurious currents near basin boundaries (Mellor et al., 1994; Mellor et al., 1998). Substantial
research has been done to minimise this problem but it is still a fundamental limitation of terrain-following
models (Shchepetkin and McWilliams, 2003; Ezer et al., 2002; Griffies et al., 2000).

Fully-unstructured meshes combined with a finite-element or finite-volume approach provide full flexibility
for the discretisation of complex domains. This is the main reason for their widespread use in engineering
problems. This flexibility comes at the expense of complexity and increased computational cost however.
The sub-problem of mesh generation is itself far from trivial, especially in three dimensions (Bern and
Eppstein, 1992; Gorman et al., 2006). We also note that most of the unstructured finite-volume or finite-ele-
ment techniques recently developed for 3D geophysical fluid modelling (Casulli and Walters, 2000; Chen et al.,
2003; Bacon et al., 2000; Fringer et al., 2006) can be seen as layered 2D discretisations. This solves the problem
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of coastline representation but does not improve the representation of the bathymetry (a standard terrain-
following coordinate is used for the vertical discretisation). A notable exception is the fully three-dimensional
model currently developed by Ford et al. (2004) which uses unstructured tetrahedral meshes.

The quadtree discretisation does not solve the boundary representation problem, although it could be used
to increase the resolution near a staircase representation of the topography and coastline. A staircase repre-
sentation is not the only choice however. A variety of approaches have been developed which can combine
the simplicity of a Cartesian discretisation with an accurate representation of complex boundaries: “‘embed-
ded boundaries” (Peskin, 1972; Ye et al., 1999), “cut-cell techniques” (Quirk, 1994; Berger and LeVeque,
1991; Almgren et al., 1997) and for ocean models the “shaved cell” and “partial cell” approach of Adcroft
et al. (1999). In our previous work (Popinet, 2003) we have demonstrated how a ‘“‘cut-cell technique” can
be applied to an octree discretisation. The same technique is applied here and we will just give a general
overview.

The technique relies on the finite-volume formulation of the system of equations. In a manner analogous to
the derivation in (10) all the conservation laws can be recast as flux integrals over the boundaries of the
discretisation elements. If the (cubic) cell is cut by a solid boundary the advection term in (11) can be written
as the more general form

n+% _ 3 n+% 2 ”+%
((AI.J.’,; =al'4;;; = [(suc)ﬁ%‘j’k = (suc);_y g + (s0¢); 11y — (s0€); 51y + (W), it — (swc)ﬁj,kf%}

(13)

where 5112 and a are the surface (resp. volume) fractions of the face (resp. cell) occupied by the fluid. All
the discrete gradient, divergence and Laplacian operators can be generalised in a similar manner. This formu-
lation is also used to compute consistent second-order-accurate fluxes between cells at different levels of refine-
ment (see Popinet (2003) for a detailed description). Second-order accuracy in space is maintained for the
barotropic equation in complex domains. A “merged cell” technique is used to avoid the CFL restriction
caused by very-small cut cells (Popinet, 2003; Quirk, 1994).

6. Numerical results

The semi-implicit scheme (0 = o = o’ = 1/2) has been implemented as part of the Gerris flow solver. Most of
the routines are common to both the ocean solver and the incompressible flow solver. In particular, the 2D
multilevel Poisson algorithm is used with minor variations to solve the Helmholtz equation for the linear
free-surface. The BCG advection scheme is also unchanged. The only routines strictly specific to the ocean
model are the equation of state and the vertical integrations required for the hydrostatic pressure and vertical
velocity.

In the following we present both two-dimensional test cases designed to highlight important properties and/
or shortcomings of the model in the context of ocean modelling, as well as three-dimensional examples of real-
istic applications. The 2D simulations use the 3D model with a single layer in the vertical. We also try to give
quantitative estimates rather than just a qualitative description of the model results.

6.1. Geostrophic adjustment problem

The approximate projection method has been shown to give good results for incompressible flows, however
it has not been tested in the context of linearised inertia—gravity waves we consider here. The two main issues
regard the stability of the computational mode associated with a collocated A-grid discretisation and the
strength of the energy damping induced by the approximate projection.

As a first test case we consider the geostrophic adjustment problem studied by Dupont (2001) and Le Roux
et al. (1997). A Gaussian bump

2,2
x4yt

n(x,y) =me #
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is initialised in a 1000 x 1000 km, 1000 m deep square basin. A reduced gravity g = 0.01 m/s is used to approx-
imate a 10 m-thick stratified surface layer. The corresponding geostrophic velocities on an f-plane are initia-
lised as

2 _2?
I/l(, )_ gn()ye ,:rz

=S 7

) 242

v(x,y) = — f’;‘);e’R—z7
0

where fy is the Coriolis parameter. Following Dupont we set fy=1.0285x 10~*s~! R=100km,
o = 599.5 m which gives a maximum geostrophic velocity of 0.5 m/s.

In the context of the linearised shallow-water equations, the geostrophic balance is an exact solution which
should be preserved by the numerical method. In practice, this would require an exact numerical balance
between terms computed very differently: the pressure gradient and the Coriolis terms in the momentum equa-
tion. If this numerical balance is not exact, the numerical solution will adjust toward numerical equilibrium
through the emission of gravity-wave noise which should not affect the stability of the solution. This problem
is thus a good test of both the overall accuracy of the numerical scheme and its stability properties when deal-
ing with inertia—gravity waves. We note in particular that a standard A-grid discretisation would develop a
strong computational-mode instability in this case. Also, as studied by Le Roux et al. (2000), an inappropriate
choice of finite-element basis functions will result in growing gravity-wave noise.

Figs. 3 and 4 summarise the results obtained when running the geostrophic adjustment problem on a
64 x 64 uniform grid with a timestep Az = 1000 s. The maximum error on the height field (Fig. 3) is small even
after 18 days. After a strong initial transient corresponding to the emission of gravity waves, the error reaches
a minimum at day 3 and then slowly grows with time with modulations due to the reflections of the initial
gravity waves on the domain boundaries. As illustrated in Fig. 4, this growth is not due to any instability
of the solution but to the slow decrease of the maximum amplitude of the Gaussian bump due to numerical
energy dissipation.

Numerical energy dissipation is itself a problem and it is important to quantify it. As shown by Sadourny
(1975) it is possible to formulate a strictly enstrophy- and energy-preserving finite-difference model on a C-
grid. A finite-volume A-grid formulation using a semi-implicit time-discretisation and an exact projection

1.5 T T T T T I T

0.5

Maximum error on surface height (cm)

0 1 I 1 I 1 I 1
0 5 10 15 20

Time (days)

Fig. 3. Evolution of the maximum error on the surface height for the geostrophic adjustment problem.
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Fig. 4. Evolution of the surface-height error field. (a) = 1.157 days, (b) r=2.315 days, (c) ¢t =3.472 days, (d) t =4.630 days, (e)
t=17.361 days.

would also be exactly energy-preserving (Dupont, 2001), however it would have a problematic computational
mode as discussed previously. Dupont (2001) quantifies the energy conservation properties of various schemes
using a non-linear variant of the geostrophic adjustment problem. A B-plane, f=f, + Sy is used and the
advection terms are included in the momentum equation. No explicit dissipation is added. As in Dupont
(2001) we chose f=1.607 x 10~ m~'s~!. The geostrophic eddy moves slowly westward through the emis-
sion of Rossby waves and southward due to the non-linear advection terms. The resulting evolution of the
total energy is shown in Fig. 5. For our method, the slow decrease in the total energy is due both to the dis-
sipation of potential energy induced by the approximate projection operator and to the dissipative properties
of the BCG upwind advection scheme. Another run with the advection terms switched off (Fig. 5, square sym-
bols) confirms that the dissipation induced by the approximate projection operator dominates the total dissi-
pation. The results however compare favourably with the finite-element formulations tested by Dupont which
all show significantly larger energy dissipation.

6.2. Coastally-trapped wave

To test the ability of the method to represent coastlines accurately, we reproduce the coastally-trapped
wave test case of Curchitser (1999). The simulation is initialised with the exact solution of Lamb (1993). A

0.95
0.9

0.85

C-grid
This study (no advection) |
This study
Delumped LW b

LLS
PZM I
Lumped LW

Normalised total energy

0.8 —

0.75—

T
+<4AD>DeoeDOeO

0.7 1 I 1 I 1 I 1
0 5 10 15 20

Time (days)

Fig. 5. Evolution of the total energy for the non-linear geostrophic adjustment problem. The C-grid model is based on Sadourny (1975)
and implemented by Dupont (2001). The finite-element formulations are those studied by Dupont. LW: Lynch and Werner (1987), LLS:
Le Roux et al. (2000), PZM: Peraire et al. (1986).
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constant-depth ocean on an f-plane is bounded by a circular coastline. The parameters are the same as used in
IMCS (2006): h=1500m, g =3.92 x 1072 ms 2, f, = 8.34 x 10> s, radius of the ocean r = 600 km. The
simulation runs for three wave periods (5.2465 days) with a timestep of 1199 s for all simulations. The linear-
ised shallow-water equations (i.e. using a linearised free-surface and neglecting advection of momentum) are
solved with no added explicit dissipation. The error on the final height field is estimated using the correlation
technique of Curchitser (1999). The correlation function C is defined as:

B J ML(r,0 — 6y)dxdy

C(6) [L?dxdy ’

where L(r,0) is the analytical solution of Lamb and M(x, y) is the numerical solution. The phase error and the
correlation error are then computed by finding the value 6,,,, of 8y maximising C.

Several runs were performed for different spatial resolutions (by varying the number of quadtree levels from
5 to 8) and using a constant or adaptive refinement strategy. The final solutions obtained with 7 levels of
refinement for both a constant and an adaptive resolution are illustrated in Fig. 6. The vorticity adaption cri-
terion (Popinet, 2003) was used to follow the waves as they travelled around the coastline.

Table 1 summarises the results for Gerris and reproduces the results obtained using FVCOM (Chen et al.,
2003) and ROMS (Shchepetkin and McWilliams, 2005). FVCOM is a finite-volume solver using an unstruc-
tured triangular discretisation of the circular ocean. The constant resolution version of Gerris shows a
convergence and accuracy which is better than FVCOM. The adaptive version shows a similar convergence
and accuracy with a slight decrease of accuracy for high-resolution due to accumulating interpolation noise
when refining/coarsening the adaptive grid (this leads to slightly larger amplitudes close to the coastline which
explains the correlation coefficients larger than one). ROMS is using a staircase representation of the coastline
and consequently suffers from much larger phase errors than both Gerris (using the cut-cell technique) and
FVCOM. The ROMS solution is also very noisy compared to the solutions illustrated in Fig. 6. We also note
that because both FVCOM and ROMS rely on an explicit barotropic solver, they used a timestep of around
250 s on the coarsest mesh (proportionally less on finer meshes).

An often-heard argument against the use of variable-resolution meshes for ocean modelling is the occur-
rence of spurious inertial and gravity waves reflections/scattering at refinement boundaries (Griffies et al.,
2000). We believe one of the causes of spurious reflections is the use of discrete spatial operators which do
not preserve second-order spatial accuracy when the resolution changes. The operators used in Gerris are
designed to be second-order accurate everywhere (Popinet, 2003) and we do not expect spurious reflections
to occur at refinement boundaries. To test whether this is indeed the case, we repeated the coastally-trapped
wave test case on a mesh where half the circular domain is resolved with double the resolution (9.375 km) of

Fig. 6. Surface-height isolines for the coastally-trapped wave solution at ¢ = 5.2465 days (3 wave periods). (a) Constant resolution
9.375 km. (b) Adaptive resolution, white 9.375 km, black 150 km.
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Table 1

Results for the coastally-trapped waves in a circular basin

Model Resolution (km) Maximum C Angle of max C (°)

Gerris 37.5 0.9823 3.7
18.75 0.9954 0.3
9.375 0.9974 0.1
4.6875 1.0000 0.0

Gerris adaptive 37.5 0.9766 3.7
18.75 0.9904 0.2
9.375 1.0040 0.0
4.6875 1.0310 0.0

FVCOM 40 0.9921 —4.6
20 0.9934 —-1.6
10 0.9993 -0.5
5 0.9999 -0.2

ROMS 40 0.9801 -35.5
20 0.9909 —18.2
10 0.9971 -9.3
5 0.9986 —4.9

Gerris half-refined 9.375/18.75 0.9965 0.3

The FVCOM and ROMS results are reproduced from IMCS (2006).

the other half (18.75 km). The results are given at the end of Table 1 and are close to those obtained on a mesh
with a constant resolution equal to that of the coarser half of the domain (18.75 km), which confirms that no
significant spurious reflections occur at refinement boundaries.

6.3. Wind-driven circular ocean

Dupont presents another interesting test case for the representation of a circular coastline (Dupont, 2001):
the wind-driven circular ocean circulation. For a constant-depth ocean on an f-plane with a linear bottom
friction, the linearised shallow-water equation admits the following stationary solution for the surface-height:

oW R Pk
11(1‘,0)—RgHK|:§+Z<751n20—1>:|7

where R is the radius of the ocean, g the acceleration of gravity, f the Coriolis parameter, H the ocean depth, x
the linear friction coefficient and W the gradient of the wind forcing:

7.(r,0) = Wr:n 0 .

We follow Dupont and study the convergence with spatial resolution of the normalised error in # defined as:

o Jli—nldxdy | [dxdy
S e T ey

where 7 is the model solution. The model is run to convergence with f=10"*s"!, W =10"*m?s™? and
x=10"s"!. Fig. 7 illustrates the solution obtained with 5 levels of refinement. The convergence of the
normalised error with spatial resolution is plotted in Fig. 8 together with the results obtained by Dupont
for a streamfunction-vorticity C-grid model and the Hua-Thomasset finite-element model (HT) (Hua and
Thomasset, 1984). The HT model gives the best result of all the finite-element models tested by Dupont for
this particular test case. An unstructured triangular mesh is used for the finite-element model.

The C-grid model shows much larger errors and only first-order convergence due to the stair-step represen-
tation of the circular coastline. Both the HT model and Gerris show second-order convergence. The errors
obtained with Gerris are also substantially smaller than that obtained with the HT model.
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Fig. 8. Convergence of the normalised error with spatial resolution for different models. Both the HT and C-grid results are reproduced
from the study of Dupont (2001).
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6.4. Flow over a Gaussian bump

The test cases presented this far are only two-dimensional. An interesting three-dimensional configuration
was used by Adcroft et al. (1999), Haidvogel et al. (1991) to validate their shaved cells and partial step repre-
sentations of topography. A Gaussian bump is placed in a periodic channel bounded by solid walls with a slip
boundary condition. The width of the channel is 320 km and its length 640 km. The 3D “primitive equations”
of Section 2 are solved with the parameters listed in Table 2.

No explicit diffusion is added either on the density or momentum. The shape of the Gaussian bump is given
by

h(x,y) = H — Hoexp (— [(x —x0) + (y —yo)z] /L2)7

with xo = 200 km and yo = 150 km.

The constant barotropic inflow g is imposed by adding a spatially-constant body force in the x-direction.
After 10 days the flow pattern illustrated in Fig. 9 is obtained. The same contour intervals as in Adcroft et al.
(1999) are used for the representation. The result compares very well with Figs. 14 and 18 of Adcroft et al. In
particular the solution is as free of high-frequency noise as that obtained by Haidvogel et al. (1991) with the
spectral SPEM model (reproduced in Fig. 14 of Adcroft et al.). The vorticity maximum in the detached vortex
is well captured and does not show the excessive damping of the “full step” representation of topography

Table 2

Parameters for the Gaussian bump test case

Grid size 256 x 128 x 8
Ocean depth H (m) 4500

Height of bump H, (m) 4050

Length scale of bump L (km) 25
Stratification ¢ 1.5
Barotropic in-flow uy (cm s™") 25

Coriolis parameter /(s 1074
Timestep (s) 600
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Fig. 9. Non-dimensional depth-integrated vorticity ¢ /f at t =10 days. Contour interval = 100.
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(Fig. 18c of Adcroft et al.). The Gerris solution is also cleaner than that obtained by Adcroft et al. with either
the “piecewise linear” or “partial step” methods.

6.5. Tidally-driven flow in Cook Strait

We conclude with an example of adaptive barotropic flow with a complex coastline and bathymetry and a
large ratio between the smallest and largest scales. Cook Strait, the stretch of water between the North and
South Islands of New Zealand is a complex, highly energetic marine environment. The Marlborough Sounds
— a drowned mountain river system at the northern end of the South Island — have a very convoluted coastline
and provide a good test of the robustness of the treatment of embedded solid boundaries.

The simulation domain is illustrated in Fig. 10. The eastern part of the strait is relatively shallow while the
western part drops off steeply. Because we only solve for the barotropic flow in this example, we limit the
maximum depth to 400 m as an approximation to a fixed-depth thermocline. A “Flather” boundary condition
is used on all four boundaries (Flather and Heaps, 1975) where only the M, component of the surface eleva-
tion is imposed, using results from the Walters and Goring tidal model (Walters et al., 2001). The main feature

Fig. 10. Coastline and isobaths for the Cook Strait tidal model. The domain extent is 500 x 500 km. Both the coastline and the isobaths
are drawn using their exact representation on the quadtree mesh. The light grey area indicates depths deeper than 400 m. The black box
indicates the area zoomed in Fig. 11.
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of the M, tides around New Zealand is a single Kelvin-like wave propagating anti-clockwise around both
islands. As a result, the tides on the eastern and western sides of Cook Strait are in opposition of phase with
an amphidrome close to the narrowest point of the passage. The resulting tidal pressure gradient then forces
strong currents both in the main passage and in some branches of the Marlborough Sounds.

The full 3D model is used to solve for the barotropic part of the solution by using only a single vertical
layer. The bathymetry is described using the full 3D volume-of-fluid technique described in Section 5.4. A
small amount (4 x 107 %s™") of linear bottom friction is added to dampen large velocities in very shallow
areas. The resolution of the cells defining the coastline is fixed at 12 quadtree-levels i.e. 500 km/2'? ~
122 m. The minimum resolution is set to 6 levels i.e. ~7.8 km. Away from the coastline the resolution is
adapted dynamically at every timestep according to the local vorticity. The timestep is also adapted dyna-
mically in order to verify the CFL condition required for the stability of the advection scheme. The average
timestep is approximately 40 s. In established regime the total number of cells is approximately constant at
~140,000 (compared to (2'%)? ~ 17,000,000 for a regular Cartesian grid of equivalent resolution). Each time-
step takes 10 s of CPU time on a Pentium 4 2.6 GHz processor, of which less than 5% is used to adapt the grid.
The simulation required approximately 50 MBytes of memory.

Figs. 11 and 12 show part of the depth-averaged vorticity field for # = 6 days. The combination of strong
currents and sharp headlands creates vorticity “dipoles” close to the coastline which are then advected away
from the coast by the mean tidal circulation. The weak dissipation due to bottom friction in deeper water as

Fig. 11. Detail of the vorticity field at = 6 days. The domain extent is 83 x 73 km. The black boxes indicate the areas represented in Figs.
12 and 13.
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Fig. 12. Detail of the adaptive quadtree mesh. The coastline is statically refined at the finest level while individual eddies are tracked
dynamically. The domain extent is 36 x 29 km. The minimum spatial resolution is 122 m.

well as the good energy conservation properties of the numerical scheme lead to long-lived eddies which inter-
act with newer eddies produced at each tidal cycle. This leads to the complex vorticity field illustrated in the
figures. This process is more clearly illustrated by the accompanying animation (Popinet, 2005).

Fig. 12 displays a detail of the quadtree mesh for ¢ = 6 days. High-vorticity areas are tracked with a max-
imum resolution of 12 levels. Using a statically refined mesh with a high resolution near the coastline decreas-
ing offshore leads to a very different picture. Eddies are strongly damped by numerical diffusion as soon as
they leave the coastline and the process of inter-tidal interactions between eddies does not occur.

While the code has been validated in the Cook Strait area for the prediction of tidal amplitudes and cur-
rents (Msadek, 2005), the high-resolution results presented here still need to be compared with available obser-
vational measurements. However, satellite imagery provide convincing first evidence that the processes of eddy
generation off headlands, subsequent vorticity transport offshore and inter-tidal eddy interactions illustrated
here are important in reality. The International Space Station pictures in the accompanying material (NASA,
2002a,b) show structures very similar to the small offshore eddies and vorticity layers off headlands illustrated
in Fig. 11.

One may argue that trying to resolve individual eddies at the scales illustrated here is not necessary as these
scales are meant to be adequately represented by sub-grid turbulence models, however most turbulence models
rely on assumptions (e.g. spatial isotropy) which are not verified in strongly sheared flows such as boundary
layers. We believe that the high resolution made possible by adaptive techniques will be a key requirement in
accurately modelling the on-shore/off-shore transport processes controlling sediment dynamics, nutrient fluxes
in the marine ecosystem and bio-geochemical cycles generally.
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7. Conclusion

The development of an adaptive ocean model has been described. The dynamic adaptivity — allowing
for multi-scale representation within a single model that can evolve in time — is achieved through a
conservative finite-volume discretisation which requires collocation of all the geophysical variables (A-grid
discretisation). It is demonstrated, however, that the extension to a free-surface ocean model of the
approximate projection method overcomes the A-grid limitations at the expense of a small amount of
numerical energy dissipation. Test cases clearly underline the accuracy and efficiency of this adaptive ocean
model; accurate geostrophic balance, robust and accurate representation of bathymetry and coastlines are
demonstrated.

As a first demonstration of the functional adaptivity, the present three-dimensional ocean model has a
linear free surface, and is incompressible, hydrostatic, and Boussinesq. Here, the adaptivity is also limited
to the horizontal plane only, and is projected down through a series of z-level, stacked layers in the vertical.
Nevertheless, the boundaries are represented with a “cut-cell” technique, so the familiar “staircase” pitfalls of
typical finite difference, z-level models are avoided (Adcroft et al., 1997). Furthermore, the range of relevant
geophysical solutions for such an ocean model remains large, and therefore permit the exploration of a num-
ber of testing problems.

For the case study of coupling between a complex coastal and offshore barotropic flow, we demonstrate
how the adaptive mesh results in a reduction of two orders of magnitude in the number of grid points. More-
over, the dynamic adaptivity gives the model an advantage over other models that have an unstructured
spatial grid that is fixed in time, as it has the ability to track evolving fine-scale features (e.g. eddies shed from
headlands, meandering frontal boundaries etc. ..). This is particularly important for the accurate simulation
of processes which are not adequately described by current subgrid-scale models (e.g. turbulence near complex
coastlines). Compared to more classical unstructured grid approaches, the “semi-structured” quadtree grid we
employ is very easy to generate and — as a result — the cost of adapting the grid at every timestep is a small
fraction of the total computational cost. While time-adaptivity is certainly possible on unstructured grids,
it is expensive and cannot usually be applied at every timestep (Bacon et al., 2000). In the context of geo-
physical fluid flows, we are only aware of two studies demonstrating time-adaptive unstructured grids (Bacon
et al., 2000; Ford et al., 2004).

From a user perspective, the fact that adaptive mesh generation is part of the solution procedure allows
flexible control of the level of refinement, so that issues of convergence — for example — can be addressed
by simply changing an input file, thereby avoiding having to do a model re-build each time the resolution
is altered. The hierarchical quadtree structure is also naturally suited to multigrid algorithms which leads
to robust and efficient solvers for the implicit free-surface discretisation even with arbitrarily complex
coastlines.

We are currently working on generalising this approach to a non-hydrostatic, nonlinear free-surface formu-
lation with adaptivity in all dimensions. The underlying adaptive Navier—Stokes fluid solver Gerris naturally
deals with non-hydrostatic, nonlinear free surface problems, in which adaptivity in all three spatial dimensions
is routinely performed. In the oceanic case, decoupling of the hydrostatic and non-hydrostatic pressures can be
employed to overcome the stiffness of the pressure equation due to the large aspect ratio between horizontal
and vertical scales (Marshall et al., 1997a). The extension of adaptivity to the vertical coordinate could be
more problematic and has not yet been studied in any significant detail by us or others. The main issue will
be ensuring the accurate discretisation of the horizontal hydrostatic pressure gradients across levels of refine-
ment. Another important general issue for adaptive solvers which has received little attention is the develop-
ment of criteria for refinement to control errors in subgrid-scale parametrisation.

We are confident that these issues can be overcome and that the resulting dynamic adaptivity will be an
essential component of the next generation of geophysical fluid flows models.

Appendix A. Stability of Adams—Bashforth discretisation

Model simulations of the geostrophic adjustment problem tested an Adams—Bashforth scheme to discretise
the Coriolis terms in time. The simulations seemed to require a timestep much shorter than expected as the
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simulation proceeded. This appendix confirms the need for such a short timestep, and motivates the use of the

semi-implicit scheme for the Coriolis terms which is possible within the adaptive model because of the collo-

cated velocity components.

shallow water system is used to explore the stability properties of an inertia-

A simple, one-dimensional
gravity wave system using Adams—Bashforth discretisation for the Coriolis terms, viz,
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Fig. 13. Detail of the barotropic velocity field in the Tory channel area of the Marlborough Sounds.
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Following Marshall et al. (1997), an Adams—Bashforth method (AB2) is used to discretise the Coriolis
terms, while the remaining terms are allowed to range from fully explicit to fully implicit. The discrete (in time)
system can then be written (see Fig. 13):

un+l — " = a<vn + OC(U” _ Un—l)) _ b<dl7n+l + e},ln), (19)
Un+l — = _a<un + OC(M” _ unfl))’ (20)
=" = c(du" + eu"), D)

where a = fAt, b = gkAt, c = HkAt, o =1/2+ y, d=0, and e =1 — 6, where 0 is the implicitness parameter
such that 0 < 0 < 1. As in Marshall et al. (1997), the offset in the AB2 scheme y is set to be 0.1, and is
consistent with the stability of this AB2 scheme alone, i.e., a < 1/2 when y > a*/4 + a*/2. In terms of an ampli-

fication factor A such that "' = Ai", the discrete system can be reduced to the following fourth order
polynomial:
1+ cbd®) 4 73 (2bede — 2) + 121 + bee® + (1 + a)?) + A(—2d%a(1 + «)) + a*a® = 0. (22)

Stable numerical solutions arise for |A| < 1. The fourth order system reduces to two complex conjugate pairs,
one representing the computational mode which is found to be always stable for the range of parameters
explored here, the other the physical mode.

Solutions for the physical mode are plotted in Fig. 14 as a function of the dimensionless numbers fA¢ and
Rk. The region of stability is that below (or to the right of) each curve, and the different curves are labelled
with the value of the implicitness parameter 6. The horizontal dashed line is the AB2 stability boundary in the
absence of gravity waves. For pure gravity waves with 8 > 0.5 the system is always stable.

The important result is that the stability region for the full inertia-gravity wave system falls well below the
AB2 line at fAr = 1/2 for the centred-in-time 0 = 1/2 discrete system, particularly as Rk increases. Such Rk
changes represent either an increase in the depth H of the domain, or an increase in the wavenumber k (or
equivalently a reduction in the resolved wavelengths). This theoretical solution explains the need for

fdt

Fig. 14. Stability boundaries for the discretisation of an inertia-gravity wave system as a function of the dimensionless numbers Rk and
fAt. Discretisation is Adams—Bashforth for the Coriolis terms, and implicit in the gravity wave terms. Stable solutions lie below and/or to
the right of the curves. Each curve is labelled with the implicitness parameter 0 of the gravity wave terms. The horizontal dashed line marks
the stability boundary for solutions with no gravity waves.
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significant reductions in the timestep as the generation of resolved, fine-scale structure in the numerical model
solution occurs. Even though the separate gravity and inertia waves are theoretically stably resolved by
fAtr = 1/2, their interaction as an inertia-gravity wave system significantly brings down the available region
of stability.

Allowing for more implicitness in the gravity wave terms via increasing 6 expands the stability range, and
with 6 = 0.6 a permissible timestep around fAz = 1/2 is recovered for all values of Rk. Further increases in 6
allow for significant increases in fAr at larger values of Rk, with smaller gains for smaller Rk. However this
comes at the cost of increased dissipation of gravity waves.
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