

Coastal Modelling System Non-Equilibrium Sediment Transport Model (NET)

Alex Sánchez, CHL Weiming Wu, NCCHE

Outline

- Introduction
 - CMS and NET Overview
 - Equilibrium vs. Non-equilibrium sediment transport
 - Advantages of Non-equilibrium
- Model Equations: An overview
 - Concentration capacity
 - Adaptation length
 - Bed-slope coefficient
 - Sediment diffusivity
 - Total load correction factor
- Avalanching
- Numerical implementation
- Questions

Introduction: CMS Overview

Overview

- Coupling
 - Wave-Flow
 - Radiation stress
 - Wave height, period and direction
 - Flow-Wave
 - Water elevation
 - Currents
 - Updated bathymetry

- Sediment Module
 - Total load
 - Sediment balance Eq.
 - Equilibrium Transport (ET)
 - Advection-Diffusion Eq.
 - Suspended load
 - Bed change Eq.
 - Morphology change
 - Bed-slope effect
 - Bed load transport
 - 3. Non-Equil. Transport (NET)
 - Advection-Diffusion Eq.
 - Total load
 - Bed change Eq.
 - Morphology change
 - Bed-slope effect

Introduction: NET Overview

- 2D depth-averaged
- Features (processes)
 - Advection
 - Diffusion
 - Erosion and deposition
 - Bed-slope effects
 - Avalanching

Definition of variables

Introduction: Equilibrium vs. Non-Equilibrium

- Equilibrium sediment transport
 - Assume local instantaneous equilibrium for bed-load transport or total-load
 - Bed change is determined by mass balance equation (Exner equation)
- Non-equilibrium sediment transport models
 - Do not assume any sediment transport load to be in equilibrium
 - Bed change is proportional to difference between local and equilibrium transport rates

Advantages of NET

- Considers temporal and spatial lags between flow and sediment transport
- Can easily handle constrained sediment loading (over- or under-loading)
- Hard-bottom problem is no problem
- Can model suspended and bed load separately or combined as bed-material or total load
- More stable than equilibrium sediment transport

Model Equations: Quick Overview

Advection-diffusion

$$\frac{\partial}{\partial t} \left(\frac{dC_t}{\beta_t} \right) + \frac{\partial (dUC_t)}{\partial x} + \frac{\partial (dVC_t)}{\partial y} = \frac{\partial}{\partial x} \left[Kd \frac{\partial (r_s C_t)}{\partial x} + \right] + \frac{\partial}{\partial y} \left[Kd \frac{\partial (r_s C_t)}{\partial y} \right] + \alpha_t w_f (C_{t^*} - C_t)$$

Bed change equation

$$(1 - p_m) \frac{\partial h}{\partial t} = \alpha_t \, \omega_f (C_{t^*} - C_t) + S_b$$

Bed-slope term

$$S_{b} = \frac{\partial G_{x}}{\partial x} + \frac{\partial G_{y}}{\partial y} = \frac{\partial}{\partial x} \left[D_{s} (1 - r_{s}) d \left| U \right| C_{t} \frac{\partial h}{\partial x} \right] + \frac{\partial}{\partial y} \left[D_{s} (1 - r_{s}) d \left| U \right| C_{t} \frac{\partial h}{\partial y} \right]$$

 C_{t*} = Concentration Capacity

 α_t = Total Load Adapt. Coeff.

 $W_f =$ Sediment Fall Velocity

 $r_{\rm s}$ = Fraction of suspended load

 β_t = Total Load Correction Factor

K = Diffusion Coefficient

 $S_b = \text{Bed-slope term}$

 $D_s = Bed$ -slope coefficient

Concentration Capacity

- The concentration that would be achieved under steadystate and equilibrium conditions
- Formula

$$C_{t*} = \frac{Q_t}{U_c d}$$

$$Q_s$$
 = Suspended load transport

$$Q_b$$
 = Bed load transport

$$Q_t$$
 = Total load transport

$$Q_t = f_s Q_s + f_b Q_b$$

$$f_s$$
 = Suspended scaling factor

$$f_b$$
 = Bed scaling factor

- Larger scaling factors produce larger sediment loads and therefore larger morphology changes
- It is one of the most important parameters (driving force)
 - Controls largely the magnitude and distribution of the sediment concentration field

Concentration Capacity - Continued

- Options for sediment transport capacity:
 - Lund-CIRP (ERDC/CHL CR-07-01)
 - Separate equations for suspended and bed loads
 - Van Rijn (J. Hydraulic Eng. 2007)
 - Separate equations for suspended and bed loads
 - Watanabe (Proc. Coastal Sediments 1987)
 - One equation for total load
- These equations represent the sediment transport under equilibrium conditions

Adaptation Coefficient

- Related to how much time/distance it takes to reach equilibrium
- The larger the coefficient the more rapid the system goes into equilibrium and the larger the erosion and deposition

$$E - D = \alpha \ w_f(C_{t^*} - C_t)$$

- **Formulas**
 - Suspended Load

• Lin (1984)
$$\alpha = 3.25 + 0.55 \ln \left(\frac{\omega_f}{\kappa U_{*c}} \right) \qquad L_s = \frac{U_c d}{\alpha w_f}$$

$$L_s = \frac{U_c d}{\alpha w_f}$$

Amanini and Silvio (1986)

$$\frac{1}{\alpha} = \frac{b}{d} + \left(1 - \frac{b}{d}\right) \exp\left[-1.5\left(\frac{b}{d}\right)^{-1/6} \frac{w_f}{U_*}\right] \qquad b = 33z_o$$

- Bed Load
$$L_b = \begin{cases} A_{given} d \\ L_{b,given} \end{cases}$$

$$\alpha = \frac{U_c d}{L_t \omega_f}$$

$$\alpha = \frac{U_c d}{L_t \omega_f} \qquad L_t = \begin{cases} (1 - r_s) L_b + r_s L_s \\ \max(L_b, L_s) & \longrightarrow & \text{Most Stable} \\ L_{t, given} \end{cases}$$

Bed-slope Coefficient D_s

Bed change equation

$$(1-p_m)\frac{\partial h}{\partial t} = \alpha \omega_f (C_{t^*} - C_t) + \frac{\partial}{\partial x} \left[D_s (1-r_s) d \left| U \right| C_t \frac{\partial h}{\partial x} \right] + \frac{\partial}{\partial y} \left[D_s (1-r_s) d \left| U \right| C_t \frac{\partial h}{\partial y} \right]$$

- Method first adapted by Watanabe (1985)
- Smoothes bathymetry
- Improves stability
- Related to sediment properties and flow characteristics
- Reported values
 - Watanabe (1985) used $D_s = 10$
 - Larson et al. (2003) and Karambas (2003) used $D_s = 2$
- Recommended values: 1-10

Sediment Diffusivity Coefficient

- Coefficient is related to the strength of horizontal mixing in a depth-averaged sense
- Directly related to eddy viscosity

$$K = \frac{v}{\sigma_s}$$

K = Diffusion coefficient

 $\nu = \text{Eddy viscosity}$

 $\sigma_{\rm s} = {\rm Smidth\ number}$

Eddy viscosity $v = (1 - \theta_m)v_t + \theta_m v_w$

$$v = (1 - \theta_m)v_t + \theta_m v_w$$

- Falconer
$$v_t = \frac{1}{2} \left[1.15 gd \frac{|U_c|}{C^2} \right]$$

Subgrid model

$$v_{t} = v_{0} + \sqrt{\left(\alpha_{0} u_{*c} d\right)^{2} + \left(l_{h}^{2} \left|\overline{S}\right|\right)^{2}}$$

Waves

$$v_w = \Lambda u_m H$$
 $\theta_m = \left(\frac{H}{d}\right)^3$

 $\Lambda = \text{empirical coeff.}$

 u_m = Wave orbital velocity

H =Wave height

Total-load Correction Factor

- Accounts for the lag between the depth-averaged sediment and flow velocities
- For total load transport

$$\beta_t = \frac{1/U_c}{r_s/U_{sed} + (1-r_s)/u_b} \qquad U_{sed} = \frac{\int_{z_b+a}^{s} u_s c dz}{\int_{z_b}^{z_s} c dz}$$

$$U_{sed} = \frac{\int_{z_b+a}^{z_s} u_s c dz}{\int_{z_b+a}^{z_s} c dz}$$

Velocity profile

$$u_s(z) = \frac{u_{*_c}}{\kappa} \ln \left(\frac{z}{z_0} \right)$$

Concentration profile

$$c(z) = c_a \exp\left\{-\frac{w_f}{\varepsilon}(z-a)\right\}$$

$$\beta_t = f\left(\frac{z_o}{d}, \frac{w_f d}{\varepsilon}\right)$$
 For sands $\beta_t \approx 0.7$

Hard-Bottom Problem

Concentration capacity at hard-bottom cells

$$C_{t*,hb} = \min(C_t, C_{t*}) \leftarrow \text{Only allows deposition}$$

Bed change equation

$$(1 - p'_m) \frac{\partial h}{\partial t} = \alpha_t \omega_f \left[\min(C_t, C_{t^*}) - C_t \right] + S_{hb}$$

Advection-diffusion equation

$$\frac{\partial}{\partial t} \left(\frac{dC_{t}}{\beta_{t}} \right) + \frac{\partial(dU_{x}C_{t})}{\partial x} + \frac{\partial(dU_{y}C_{t})}{\partial y} = \frac{\partial}{\partial x} \left[K_{x} d \frac{\partial(r_{s}C_{t})}{\partial x} \right] + \frac{\partial}{\partial y} \left[K_{y} d \frac{\partial(r_{s}C_{t})}{\partial y} \right] + \alpha_{t} \omega_{f} \left[\min(C_{t}, C_{t^{*}}) - C_{t} \right]$$

Avalanching

Avalanching process is simulated as

$$\frac{(h_i + \Delta h_i) - (h_p + \Delta h_p)}{\Delta l} = \gamma \tan \phi_r$$

$$h = \text{depth}$$

 Δl = distance between cell nodes

$$\phi_r$$
 = Repose angle

$$\gamma = \begin{cases} 1 & \text{for } h_p < h_i \text{ (upslope)} \\ -1 & \text{for } h_p > h_i \text{ (downslope)} \end{cases}$$

- Two approaches available
 - 1. 9-point mass balance approach (Wu 2007)
 - May be used at large time intervals
 - Iterates until convergence
 - 2. Relaxation method (5- and 9-point)
 - Requires smaller time steps (morphologic time step)
 - No iterations
 - Very simple and stable

Avalanching: Relaxation Method

Mass balance between neighboring cells

$$A_i \Delta h_i + A_p \Delta h_p = 0$$

Repose slope condition

$$\frac{(h_i + \Delta h_i) - (h_p + \Delta h_p)}{\Delta l} = \gamma \tan \phi_r \qquad \tan \phi = \frac{h_i - h_p}{\Delta l}$$

Depth change due to avalanching

$$\Delta h_p = R \frac{A_i \Delta l \left(\tan \phi - \gamma \tan \phi_r \right)}{A_p + A_i} \qquad \Delta h_i = -\frac{\Delta h_p A_p}{A_i}$$

 $R = \text{Relaxation factor} \approx 0.1 - 0.2$

Numerical Methods

- Finite volume method
- Time integration
 - Explicit Euler scheme
- Advection
 - Upwind
 - Hybrid Linear/Parabolic
 Approximation (HLPA)
- Diffusion
 - Central difference
- Bed-slope term (conc.)
 - Central difference

- Boundary conditions
 - Ocean boundaries
 - Inflow: "Zero-gradient" BC
 - Outflow: Open BC
 - Land boundary
 - Zero flux BC
 - Future versions will have
 - User specified concentration (river)
 - Equilibrium BC

Questions?